Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 470:f57f92c7c874
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 28 Mar 2022 08:51:19 +0900 |
parents | 69f90d8d0607 |
children | 2b048496cb21 |
files | src/ODC.agda |
diffstat | 1 files changed, 15 insertions(+), 17 deletions(-) [+] |
line wrap: on
line diff
--- a/src/ODC.agda Wed Mar 23 21:42:12 2022 +0900 +++ b/src/ODC.agda Mon Mar 28 08:51:19 2022 +0900 @@ -106,7 +106,7 @@ OrdP x y | tri≈ ¬a refl ¬c = no ( o<¬≡ refl ) OrdP x y | tri> ¬a ¬b c = yes c -open import Relation.Binary.HeterogeneousEquality as HE -- using (_≅_;refl) +-- open import Relation.Binary.HeterogeneousEquality as HE -- using (_≅_;refl) record Element (A : HOD) : Set (suc n) where field @@ -118,12 +118,13 @@ TotalOrderSet : ( A : HOD ) → (_<_ : (x y : HOD) → Set n ) → Set (suc n) TotalOrderSet A _<_ = Trichotomous (λ (x : Element A) y → elm x ≡ elm y ) (λ x y → elm x < elm y ) +PartialOrderSet : ( A : HOD ) → (_<_ : (x y : HOD) → Set n ) → Set (suc n) +PartialOrderSet A _<_ = (a b : Element A) + → (elm a < elm b → (¬ (elm b < elm a) ∧ (¬ (elm a ≡ elm b) ))) ∧ (elm a ≡ elm b → (¬ elm a < elm b) ∧ (¬ elm b < elm a)) + me : { A a : HOD } → A ∋ a → Element A me {A} {a} lt = record { elm = a ; is-elm = lt } --- elm-cmp : {A a b : HOD} → {_<_ : (x y : HOD) → Set n } → A ∋ a → A ∋ b → TotalOrderSet A _<_ → Tri _ _ _ --- elm-cmp {A} {a} {b} ax bx cmp = cmp (me ax) (me bx) - record SUP ( A B : HOD ) (_<_ : (x y : HOD) → Set n ) : Set (suc n) where field sup : HOD @@ -147,24 +148,21 @@ Zorn-lemma : { A : HOD } → { _<_ : (x y : HOD) → Set n } → o∅ o< & A + → PartialOrderSet A _<_ → ( ( B : HOD) → (B⊆A : B ⊆ A) → TotalOrderSet B _<_ → SUP A B _<_ ) → Maximal A _<_ -Zorn-lemma {A} {_<_} 0<A supP = zorn00 where +Zorn-lemma {A} {_<_} 0<A PO supP = zorn00 where HasMaximal : HOD HasMaximal = record { od = record { def = λ x → (m : Ordinal) → odef A x ∧ odef A m ∧ (¬ (* x < * m))} ; odmax = & A ; <odmax = {!!} } - z01 : {B a b : HOD} → TotalOrderSet B _<_ → B ∋ a → B ∋ b → (a ≡ b ) ∨ (a < b ) → b < a → ⊥ - z01 {B} {a} {b} Tri B∋a B∋b (case1 a=b) b<a with Tri (me B∋a) (me B∋b) - ... | tri< a₁ ¬b ¬c = ¬b a=b - ... | tri≈ ¬a b₁ ¬c = ¬c b<a - ... | tri> ¬a ¬b c = ¬b a=b - z01 {B} {a} {b} Tri B∋a B∋b (case2 a<b) b<a with Tri (me B∋a) (me B∋b) - ... | tri< a₁ ¬b ¬c = ¬c b<a - ... | tri≈ ¬a b₁ ¬c = ¬c b<a - ... | tri> ¬a ¬b c = ¬a a<b + z01 : {a b : HOD} → A ∋ a → A ∋ b → (a ≡ b ) ∨ (a < b ) → b < a → ⊥ + z01 {a} {b} A∋a A∋b (case1 a=b) b<a = proj1 (proj2 (PO (me A∋b) (me A∋a)) (sym a=b)) b<a + z01 {a} {b} A∋a A∋b (case2 a<b) b<a = proj1 (PO (me A∋b) (me A∋a)) b<a ⟪ a<b , (λ b=a → proj1 (proj2 (PO (me A∋b) (me A∋a)) b=a ) b<a ) ⟫ ZChain→¬SUP : (z : ZChain A (& A) _<_ ) → ¬ (SUP A (ZChain.B z) _<_ ) - ZChain→¬SUP z sp = ⊥-elim {!!} where - z02 : (x : HOD) → ZChain.B z ∋ x → ⊥ - z02 x xe = ( z01 (ZChain.total z) xe {!!} (SUP.x≤sup sp xe) {!!} ) + ZChain→¬SUP z sp = ⊥-elim (z02 (ZChain.fb z (SUP.A∋maximal sp)) (ZChain.B∋fb z _ (SUP.A∋maximal sp)) (ZChain.¬x≤sup z _ (SUP.A∋maximal sp) z03 )) where + z03 : & (SUP.sup sp) o< & A + z03 = c<→o< (SUP.A∋maximal sp) + z02 : (x : HOD) → ZChain.B z ∋ x → SUP.sup sp < x → ⊥ + z02 x xe s<x = ( z01 (incl (ZChain.B⊆A z) xe) (SUP.A∋maximal sp) (SUP.x≤sup sp xe) s<x ) ind : (x : Ordinal) → ((y : Ordinal) → y o< x → ZChain A y _<_ ) → ZChain A x _<_ ind x prev with Oprev-p x