Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 178:f5b3f30fcb16 release
ε-induction
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 20 Jul 2019 08:04:20 +0900 |
parents | a1b5b890b796 (current diff) ecb329ba38ac (diff) |
children | 6bb5d57c9561 |
files | |
diffstat | 5 files changed, 115 insertions(+), 53 deletions(-) [+] |
line wrap: on
line diff
--- a/.hgtags Mon Jul 15 19:10:58 2019 +0900 +++ b/.hgtags Sat Jul 20 08:04:20 2019 +0900 @@ -5,3 +5,5 @@ b4742cf4ef978434d98a6f0a2f891a944dea5906 current b4742cf4ef978434d98a6f0a2f891a944dea5906 current a402881cc341fb6499f60bd0f55795dbef5efc70 current +a402881cc341fb6499f60bd0f55795dbef5efc70 current +b06f5d2f34b1a16ff39aae15680a1c0d640e6b93 current
--- a/HOD.agda Mon Jul 15 19:10:58 2019 +0900 +++ b/HOD.agda Sat Jul 20 08:04:20 2019 +0900 @@ -18,7 +18,6 @@ def : (x : Ordinal {n} ) → Set n open OD -open import Data.Unit open Ordinal open _∧_ @@ -57,8 +56,8 @@ -- OD can be iso to a subset of Ordinal ( by means of Godel Set ) od→ord : {n : Level} → OD {n} → Ordinal {n} ord→od : {n : Level} → Ordinal {n} → OD {n} - c<→o< : {n : Level} {x y : OD {n} } → def y ( od→ord x ) → od→ord x o< od→ord y - oiso : {n : Level} {x : OD {n}} → ord→od ( od→ord x ) ≡ x + c<→o< : {n : Level} {x y : OD {n} } → def y ( od→ord x ) → od→ord x o< od→ord y + oiso : {n : Level} {x : OD {n}} → ord→od ( od→ord x ) ≡ x diso : {n : Level} {x : Ordinal {n}} → od→ord ( ord→od x ) ≡ x -- we should prove this in agda, but simply put here ==→o≡ : {n : Level} → { x y : OD {suc n} } → (x == y) → x ≡ y @@ -69,9 +68,10 @@ sup-o : {n : Level } → ( Ordinal {n} → Ordinal {n}) → Ordinal {n} sup-o< : {n : Level } → { ψ : Ordinal {n} → Ordinal {n}} → ∀ {x : Ordinal {n}} → ψ x o< sup-o ψ -- contra-position of mimimulity of supermum required in Power Set Axiom - sup-x : {n : Level } → ( Ordinal {n} → Ordinal {n}) → Ordinal {n} - sup-lb : {n : Level } → { ψ : Ordinal {n} → Ordinal {n}} → {z : Ordinal {n}} → z o< sup-o ψ → z o< osuc (ψ (sup-x ψ)) + -- sup-x : {n : Level } → ( Ordinal {n} → Ordinal {n}) → Ordinal {n} + -- sup-lb : {n : Level } → { ψ : Ordinal {n} → Ordinal {n}} → {z : Ordinal {n}} → z o< sup-o ψ → z o< osuc (ψ (sup-x ψ)) -- sup-lb : {n : Level } → ( ψ : Ordinal {n} → Ordinal {n}) → ( ∀ {x : Ordinal {n}} → ψx o< z ) → z o< osuc ( sup-o ψ ) + -- mimimul and x∋minimul is a weaker form of Axiom of choice minimul : {n : Level } → (x : OD {suc n} ) → ¬ (x == od∅ )→ OD {suc n} -- this should be ¬ (x == od∅ )→ ∃ ox → x ∋ Ord ox ( minimum of x ) x∋minimul : {n : Level } → (x : OD {suc n} ) → ( ne : ¬ (x == od∅ ) ) → def x ( od→ord ( minimul x ne ) ) @@ -202,6 +202,11 @@ is-o∅ {n} record { lv = Zero ; ord = (OSuc .0 ord₁) } = no ( λ () ) is-o∅ {n} record { lv = (Suc lv₁) ; ord = ord } = no (λ()) +OrdP : {n : Level} → ( x : Ordinal {suc n} ) ( y : OD {suc n} ) → Dec ( Ord x ∋ y ) +OrdP {n} x y with trio< x (od→ord y) +OrdP {n} x y | tri< a ¬b ¬c = no ¬c +OrdP {n} x y | tri≈ ¬a refl ¬c = no ( o<¬≡ refl ) +OrdP {n} x y | tri> ¬a ¬b c = yes c -- open import Relation.Binary.HeterogeneousEquality as HE using (_≅_ ) -- postulate f-extensionality : { n : Level} → Relation.Binary.PropositionalEquality.Extensionality (suc n) (suc (suc n)) @@ -228,9 +233,10 @@ L {n} record { lv = (Suc lx) ; ord = (Φ (Suc lx)) } = -- Union ( L α ) cseq ( Ord (od→ord (L {n} (record { lv = lx ; ord = Φ lx })))) --- L0 : {n : Level} → (α : Ordinal {suc n}) → α o< β → L (osuc α) ∋ L α +-- L0 : {n : Level} → (α : Ordinal {suc n}) → L (osuc α) ∋ L α -- L1 : {n : Level} → (α β : Ordinal {suc n}) → α o< β → ∀ (x : OD {suc n}) → L α ∋ x → L β ∋ x + OD→ZF : {n : Level} → ZF {suc (suc n)} {suc n} OD→ZF {n} = record { ZFSet = OD {suc n} @@ -299,7 +305,7 @@ proj1 (pair A B ) = omax-x {n} (od→ord A) (od→ord B) proj2 (pair A B ) = omax-y {n} (od→ord A) (od→ord B) - empty : (x : OD {suc n} ) → ¬ (od∅ ∋ x) + empty : {n : Level } (x : OD {suc n} ) → ¬ (od∅ ∋ x) empty x (case1 ()) empty x (case2 ()) @@ -315,15 +321,13 @@ ⊆→o< {x} {y} lt | tri> ¬a ¬b c with lt (ord→od y) (o<-subst c (sym diso) refl ) ... | ttt = ⊥-elim ( o<¬≡ refl (o<-subst ttt diso refl )) - union-u : {X z : OD {suc n}} → (U>z : Union X ∋ z ) → OD {suc n} - union-u {X} {z} U>z = ord→od ( osuc ( od→ord z ) ) union→ : (X z u : OD) → (X ∋ u) ∧ (u ∋ z) → Union X ∋ z union→ X z u xx not = ⊥-elim ( not (od→ord u) ( record { proj1 = proj1 xx ; proj2 = subst ( λ k → def k (od→ord z)) (sym oiso) (proj2 xx) } )) - union← : (X z : OD) (X∋z : Union X ∋ z) → ¬ ( (u : OD ) → ¬ ((X ∋ u) ∧ (u ∋ z ))) - union← X z UX∋z = TransFiniteExists _ UX∋z - ( λ {y} xx not → not (ord→od y) (record { proj1 = subst ( λ k → def X k ) (sym diso) (proj1 xx ) ; proj2 = proj2 xx } )) + union← X z UX∋z = TransFiniteExists _ lemma UX∋z where + lemma : {y : Ordinal} → def X y ∧ def (ord→od y) (od→ord z) → ¬ ((u : OD) → ¬ (X ∋ u) ∧ (u ∋ z)) + lemma {y} xx not = not (ord→od y) record { proj1 = subst ( λ k → def X k ) (sym diso) (proj1 xx ) ; proj2 = proj2 xx } ψiso : {ψ : OD {suc n} → Set (suc n)} {x y : OD {suc n}} → ψ x → x ≡ y → ψ y ψiso {ψ} t refl = t @@ -354,29 +358,12 @@ --- ZFSubset A x = record { def = λ y → def A y ∧ def x y } subset of A --- Power X = ord→od ( sup-o ( λ x → od→ord ( ZFSubset A (ord→od x )) ) ) Power X is a sup of all subset of A -- - -- if Power A ∋ t, from a propertiy of minimum sup there is osuc ZFSubset A ∋ t - -- then ZFSubset A ≡ t or ZFSubset A ∋ t. In the former case ZFSubset A ∋ x implies A ∋ x - -- In case of later, ZFSubset A ∋ t and t ∋ x implies A ∋ x by transitivity of Ordinals -- ∩-≡ : { a b : OD {suc n} } → ({x : OD {suc n} } → (a ∋ x → b ∋ x)) → a == ( b ∩ a ) ∩-≡ {a} {b} inc = record { eq→ = λ {x} x<a → record { proj2 = x<a ; proj1 = def-subst {suc n} {_} {_} {b} {x} (inc (def-subst {suc n} {_} {_} {a} {_} x<a refl (sym diso) )) refl diso } ; eq← = λ {x} x<a∩b → proj2 x<a∩b } - -- ord-power→ : (a : Ordinal ) ( t : OD) → Def (Ord a) ∋ t → {x : OD} → t ∋ x → Ord a ∋ x - -- ord-power→ a t P∋t {x} t∋x with osuc-≡< (sup-lb P∋t ) - -- ... | case1 eq = proj1 (def-subst t∋x (sym (subst₂ (λ j k → j ≡ k ) oiso oiso ( cong (λ k → ord→od k) (sym eq) ))) refl ) - -- ... | case2 lt = lemma3 where - -- sp = sup-x (λ x → od→ord ( ZFSubset (Ord a) (ord→od x))) - -- minsup : OD - -- minsup = ZFSubset (Ord a) ( ord→od ( sup-x (λ x → od→ord ( ZFSubset (Ord a) (ord→od x))))) - -- Ltx : {n : Level} → {x t : OD {suc n}} → t ∋ x → Ord (od→ord t) ∋ x - -- Ltx {n} {x} {t} lt = c<→o< lt - -- -- lemma1 hold because a subset of ordinals is ordinal - -- lemma1 : od→ord t o< od→ord minsup → minsup ∋ Ord (od→ord t) - -- lemma1 lt = {!!} - -- lemma3 : od→ord x o< a - -- lemma3 = otrans (proj1 (lemma1 lt)) (c<→o< {suc n} {x} {Ord (od→ord t)} (Ltx t∋x) ) -- -- we have t ∋ x → A ∋ x means t is a subset of A, that is ZFSubset A t == t -- Power A is a sup of ZFSubset A t, so Power A ∋ t @@ -395,22 +382,27 @@ lemma : od→ord (ZFSubset (Ord a) (ord→od (od→ord t)) ) o< sup-o (λ x → od→ord (ZFSubset (Ord a) (ord→od x))) lemma = sup-o< + -- double-neg-eilm : {n : Level } {A : Set n} → ¬ ¬ A → A + -- double-neg-eilm {n} {A} notnot = ⊥-elim (notnot (λ A → {!!} )) -- -- Every set in OD is a subset of Ordinals -- -- Power A = Replace (Def (Ord (od→ord A))) ( λ y → A ∩ y ) - power→ : ( A t : OD) → Power A ∋ t → {x : OD} → t ∋ x → A ∋ x - power→ A t P∋t {x} t∋x = TransFiniteExists _ -- (λ y → (t == (A ∩ ord→od y))) - lemma4 lemma5 where + + -- we have oly double negation form because of the replacement axiom + -- + power→ : ( A t : OD) → Power A ∋ t → {x : OD} → t ∋ x → ¬ ¬ (A ∋ x) + power→ A t P∋t {x} t∋x = TransFiniteExists _ lemma5 lemma4 where a = od→ord A lemma2 : ¬ ( (y : OD) → ¬ (t == (A ∩ y))) lemma2 = replacement→ (Def (Ord (od→ord A))) t P∋t - lemma3 : (y : OD) → t == ( A ∩ y ) → A ∋ x - lemma3 y eq = proj1 (eq→ eq t∋x) + lemma3 : (y : OD) → t == ( A ∩ y ) → ¬ ¬ (A ∋ x) + lemma3 y eq not = not (proj1 (eq→ eq t∋x)) lemma4 : ¬ ((y : Ordinal) → ¬ (t == (A ∩ ord→od y))) lemma4 not = lemma2 ( λ y not1 → not (od→ord y) (subst (λ k → t == ( A ∩ k )) (sym oiso) not1 )) - lemma5 : {y : Ordinal} → t == (A ∩ ord→od y) → def A (od→ord x) - lemma5 {y} eq = lemma3 (ord→od y) eq + lemma5 : {y : Ordinal} → t == (A ∩ ord→od y) → ¬ ¬ (def A (od→ord x)) + lemma5 {y} eq not = (lemma3 (ord→od y) eq) not + power← : (A t : OD) → ({x : OD} → (t ∋ x → A ∋ x)) → Power A ∋ t power← A t t→A = record { proj1 = lemma1 ; proj2 = lemma2 } where a = od→ord A @@ -436,8 +428,6 @@ lemma6 : od→ord t ≡ od→ord (A ∩ ord→od (od→ord t)) lemma6 = cong ( λ k → od→ord k ) (==→o≡ (subst (λ k → t == (A ∩ k)) (sym oiso) ( ∩-≡ t→A ))) - ∅-iso : {x : OD} → ¬ (x == od∅) → ¬ ((ord→od (od→ord x)) == od∅) - ∅-iso {x} neq = subst (λ k → ¬ k) (=-iso {n} ) neq regularity : (x : OD) (not : ¬ (x == od∅)) → (x ∋ minimul x not) ∧ (Select (minimul x not) (λ x₁ → (minimul x not ∋ x₁) ∧ (x ∋ x₁)) == od∅) proj1 (regularity x not ) = x∋minimul x not @@ -454,7 +444,6 @@ eq→ (extensionality {A} {B} eq ) {x} d = def-iso {suc n} {A} {B} (sym diso) (proj1 (eq (ord→od x))) d eq← (extensionality {A} {B} eq ) {x} d = def-iso {suc n} {B} {A} (sym diso) (proj2 (eq (ord→od x))) d - infinity∅ : infinite ∋ od∅ {suc n} infinity∅ = def-subst {suc n} {_} {_} {infinite} {od→ord (od∅ {suc n})} iφ refl lemma where lemma : o∅ ≡ od→ord od∅ @@ -478,3 +467,59 @@ choice : (X : OD {suc n} ) → {A : OD } → ( X∋A : X ∋ A ) → (not : ¬ ( A == od∅ )) → A ∋ choice-func X not X∋A choice X {A} X∋A not = x∋minimul A not + -- another form of regularity + -- + -- {-# TERMINATING #-} + ε-induction : {n m : Level} { ψ : OD {suc n} → Set m} + → ( {x : OD {suc n} } → ({ y : OD {suc n} } → x ∋ y → ψ y ) → ψ x ) + → (x : OD {suc n} ) → ψ x + ε-induction {n} {m} {ψ} ind x = subst (λ k → ψ k ) oiso (ε-induction-ord (lv (osuc (od→ord x))) (ord (osuc (od→ord x))) <-osuc) where + ε-induction-ord : (lx : Nat) ( ox : OrdinalD {suc n} lx ) {ly : Nat} {oy : OrdinalD {suc n} ly } + → (ly < lx) ∨ (oy d< ox ) → ψ (ord→od (record { lv = ly ; ord = oy } ) ) + ε-induction-ord Zero (Φ 0) (case1 ()) + ε-induction-ord Zero (Φ 0) (case2 ()) + ε-induction-ord lx (OSuc lx ox) {ly} {oy} y<x = + ind {ord→od (record { lv = ly ; ord = oy })} ( λ {y} lt → subst (λ k → ψ k ) oiso (ε-induction-ord lx ox (lemma y lt ))) where + lemma : (y : OD) → ord→od record { lv = ly ; ord = oy } ∋ y → od→ord y o< record { lv = lx ; ord = ox } + lemma y lt with osuc-≡< y<x + lemma y lt | case1 refl = o<-subst (c<→o< lt) refl diso + lemma y lt | case2 lt1 = ordtrans (o<-subst (c<→o< lt) refl diso) lt1 + ε-induction-ord (Suc lx) (Φ (Suc lx)) {ly} {oy} (case1 y<sox ) = + ind {ord→od (record { lv = ly ; ord = oy })} ( λ {y} lt → lemma y lt ) where + lemma0 : { lx ly : Nat } → ly < Suc lx → lx < ly → ⊥ + lemma0 {Suc lx} {Suc ly} (s≤s lt1) (s≤s lt2) = lemma0 lt1 lt2 + lemma1 : {n : Level } {ly : Nat} {oy : OrdinalD {suc n} ly} → lv (od→ord (ord→od (record { lv = ly ; ord = oy }))) ≡ ly + lemma1 {n} {ly} {oy} = let open ≡-Reasoning in begin + lv (od→ord (ord→od (record { lv = ly ; ord = oy }))) + ≡⟨ cong ( λ k → lv k ) diso ⟩ + lv (record { lv = ly ; ord = oy }) + ≡⟨⟩ + ly + ∎ + lemma2 : { lx : Nat } → lx < Suc lx + lemma2 {Zero} = s≤s z≤n + lemma2 {Suc lx} = s≤s (lemma2 {lx}) + -- lx Suc lx (1) z(a) <lx by case1 + -- ly(1) ly(2) (2) z(b) <lx by case1 + -- z(a) z(b) z(c) z(c) <lx by case2 ( ly==z==x) + -- + lemma : (z : OD) → ord→od record { lv = ly ; ord = oy } ∋ z → ψ z + lemma z lt with c<→o< {suc n} {z} {ord→od (record { lv = ly ; ord = oy })} lt + lemma z lt | case1 lz<ly with <-cmp lx ly + lemma z lt | case1 lz<ly | tri< a ¬b ¬c = ⊥-elim ( lemma0 y<sox a) -- can't happen + lemma z lt | case1 lz<ly | tri≈ ¬a refl ¬c = -- (1) + subst (λ k → ψ k ) oiso (ε-induction-ord lx (Φ lx) {_} {ord (od→ord z)} (case1 (subst (λ k → lv (od→ord z) < k ) lemma1 lz<ly ) )) + lemma z lt | case1 lz<ly | tri> ¬a ¬b c = -- z(a) + subst (λ k → ψ k ) oiso (ε-induction-ord lx (Φ lx) {_} {ord (od→ord z)} (case1 (<-trans lz<ly (subst (λ k → k < lx ) (sym lemma1) c)))) + lemma z lt | case2 lz=ly with <-cmp lx ly + lemma z lt | case2 lz=ly | tri< a ¬b ¬c = ⊥-elim ( lemma0 y<sox a) -- can't happen + lemma z lt | case2 lz=ly | tri> ¬a ¬b c with d<→lv lz=ly -- z(b) + ... | eq = subst (λ k → ψ k ) oiso (ε-induction-ord lx (Φ lx) {_} {ord (od→ord z)} (case1 (subst (λ k → k < lx ) (trans (sym lemma1)(sym eq) ) c ))) + lemma z lt | case2 lz=ly | tri≈ ¬a refl ¬c with d<→lv lz=ly -- z(c) + ... | eq = lemma6 {ly} {Φ lx} {oy} refl (sym (subst (λ k → lv (od→ord z) ≡ k) lemma1 eq)) where + lemma5 : (ox : OrdinalD lx) → (lv (od→ord z) < lx) ∨ (ord (od→ord z) d< ox) → ψ z + lemma5 ox lt = subst (λ k → ψ k ) oiso (ε-induction-ord lx ox lt ) + lemma6 : { ly : Nat } { ox : OrdinalD {suc n} lx } { oy : OrdinalD {suc n} ly } → + lx ≡ ly → ly ≡ lv (od→ord z) → ψ z + lemma6 {ly} {ox} {oy} refl refl = lemma5 (OSuc lx (ord (od→ord z)) ) (case2 s<refl) +
--- a/ordinal-definable.agda Mon Jul 15 19:10:58 2019 +0900 +++ b/ordinal-definable.agda Sat Jul 20 08:04:20 2019 +0900 @@ -351,12 +351,15 @@ ; replacement← = replacement← ; replacement→ = replacement→ } where + pair : (A B : OD {suc n} ) → ((A , B) ∋ A) ∧ ((A , B) ∋ B) proj1 (pair A B ) = omax-x {n} (od→ord A) (od→ord B) proj2 (pair A B ) = omax-y {n} (od→ord A) (od→ord B) + empty : (x : OD {suc n} ) → ¬ (od∅ ∋ x) empty x (case1 ()) empty x (case2 ()) + --- --- ZFSubset A x = record { def = λ y → def A y ∧ def x y } subset of A --- Power X = ord→od ( sup-o ( λ x → od→ord ( ZFSubset A (ord→od x )) ) ) Power X is a sup of all subset of A @@ -365,8 +368,8 @@ -- then ZFSubset A ≡ t or ZFSubset A ∋ t. In the former case ZFSubset A ∋ x implies A ∋ x -- In case of later, ZFSubset A ∋ t and t ∋ x implies ZFSubset A ∋ x by transitivity -- - power→ : (A t : OD) → Power A ∋ t → {x : OD} → t ∋ x → A ∋ x - power→ A t P∋t {x} t∋x = proj1 lemma-s where + power→ : (A t : OD) → Power A ∋ t → {x : OD} → t ∋ x → ¬ ¬ (A ∋ x) + power→ A t P∋t {x} t∋x = double-neg (proj1 lemma-s) where minsup : OD minsup = ZFSubset A ( ord→od ( sup-x (λ x → od→ord ( ZFSubset A (ord→od x))))) lemma-t : csuc minsup ∋ t @@ -391,6 +394,7 @@ lemma1 = subst (λ k → od→ord (ZFSubset A k) ≡ od→ord t ) (sym oiso) (==→o≡1 (lemma-eq)) lemma : od→ord (ZFSubset A (ord→od (od→ord t)) ) o< sup-o (λ x → od→ord (ZFSubset A (ord→od x))) lemma = sup-o< + union-lemma-u : {X z : OD {suc n}} → (U>z : Union X ∋ z ) → csuc z ∋ z union-lemma-u {X} {z} U>z = lemma <-osuc where lemma : {oz ooz : Ordinal {suc n}} → oz o< ooz → def (ord→od ooz) oz @@ -406,6 +410,7 @@ union← : (X z : OD) (X∋z : Union X ∋ z) → ¬ ( (u : OD ) → ¬ ((X ∋ u) ∧ (u ∋ z ))) -- (X ∋ csuc z) ∧ (csuc z ∋ z ) union← X z X∋z not = not (csuc z) record { proj1 = def-subst {suc n} {_} {_} {X} {od→ord (csuc z )} (o<→c< X∋z) oiso (sym diso) ; proj2 = union-lemma-u X∋z } + ψiso : {ψ : OD {suc n} → Set (suc n)} {x y : OD {suc n}} → ψ x → x ≡ y → ψ y ψiso {ψ} t refl = t selection : {ψ : OD → Set (suc n)} {X y : OD} → ((X ∋ y) ∧ ψ y) ⇔ (Select X ψ ∋ y) @@ -413,6 +418,7 @@ proj1 = λ cond → record { proj1 = proj1 cond ; proj2 = ψiso {ψ} (proj2 cond) (sym oiso) } ; proj2 = λ select → record { proj1 = proj1 select ; proj2 = ψiso {ψ} (proj2 select) oiso } } + replacement← : {ψ : OD → OD} (X x : OD) → X ∋ x → Replace X ψ ∋ ψ x replacement← {ψ} X x lt = record { proj1 = sup-c< ψ {x} ; proj2 = lemma } where lemma : def (in-codomain X ψ) (od→ord (ψ x)) @@ -426,8 +432,7 @@ lemma3 {y} eq = subst (λ k → ord→od (od→ord x) == k ) oiso (o≡→== eq ) lemma : ( (y : OD) → ¬ (x == ψ y)) → ( (y : Ordinal) → ¬ def X y ∧ (ord→od (od→ord x) == ψ (Ord y)) ) lemma not y not2 = not (Ord y) (subst (λ k → k == ψ (Ord y)) oiso ( proj2 not2 )) - ∅-iso : {x : OD} → ¬ (x == od∅) → ¬ ((ord→od (od→ord x)) == od∅) - ∅-iso {x} neq = subst (λ k → ¬ k) (=-iso {n} ) neq + minimul : (x : OD {suc n} ) → ¬ (x == od∅ )→ OD {suc n} minimul x not = od∅ regularity : (x : OD) (not : ¬ (x == od∅)) → @@ -439,9 +444,11 @@ lemma (case2 ()) reg : {y : Ordinal} → def (Select (minimul x not) (λ x₂ → (minimul x not ∋ x₂) ∧ (x ∋ x₂))) y → def od∅ y reg {y} t = ⊥-elim ( ¬x<0 (proj1 (proj2 t )) ) + extensionality : {A B : OD {suc n}} → ((z : OD) → (A ∋ z) ⇔ (B ∋ z)) → A == B eq→ (extensionality {A} {B} eq ) {x} d = def-iso {suc n} {A} {B} (sym diso) (proj1 (eq (ord→od x))) d eq← (extensionality {A} {B} eq ) {x} d = def-iso {suc n} {B} {A} (sym diso) (proj2 (eq (ord→od x))) d + xx-union : {x : OD {suc n}} → (x , x) ≡ record { def = λ z → z o< osuc (od→ord x) } xx-union {x} = cong ( λ k → record { def = λ z → z o< k } ) (omxx (od→ord x)) xxx-union : {x : OD {suc n}} → (x , (x , x)) ≡ record { def = λ z → z o< osuc (osuc (od→ord x))}
--- a/ordinal.agda Mon Jul 15 19:10:58 2019 +0900 +++ b/ordinal.agda Sat Jul 20 08:04:20 2019 +0900 @@ -313,7 +313,7 @@ } } -TransFinite : {n : Level} → { ψ : Ordinal {n} → Set n } +TransFinite : {n m : Level} → { ψ : Ordinal {n} → Set m } → ( ∀ (lx : Nat ) → ψ ( record { lv = lx ; ord = Φ lx } ) ) → ( ∀ (lx : Nat ) → (x : OrdinalD lx ) → ψ ( record { lv = lx ; ord = x } ) → ψ ( record { lv = lx ; ord = OSuc lx x } ) ) → ∀ (x : Ordinal) → ψ x @@ -321,15 +321,20 @@ TransFinite caseΦ caseOSuc record { lv = lx ; ord = (OSuc lx ox) } = caseOSuc lx ox (TransFinite caseΦ caseOSuc record { lv = lx ; ord = ox }) +-- we cannot prove this in intutonistic logic -- (¬ (∀ y → ¬ ( ψ y ))) → (ψ y → p ) → p --- may be we can prove this... -postulate - TransFiniteExists : {n m l : Level} → ( ψ : Ordinal {n} → Set m ) +-- postulate +-- TransFiniteExists : {n m l : Level} → ( ψ : Ordinal {n} → Set m ) +-- → (exists : ¬ (∀ y → ¬ ( ψ y ) )) +-- → {p : Set l} ( P : { y : Ordinal {n} } → ψ y → p ) +-- → p +-- +-- Instead we prove +-- +TransFiniteExists : {n m l : Level} → ( ψ : Ordinal {n} → Set m ) + → {p : Set l} ( P : { y : Ordinal {n} } → ψ y → ¬ p ) → (exists : ¬ (∀ y → ¬ ( ψ y ) )) - → {p : Set l} ( P : { y : Ordinal {n} } → ψ y → p ) - → p + → ¬ p +TransFiniteExists {n} {m} {l} ψ {p} P = contra-position ( λ p y ψy → P {y} ψy p ) --- TransFiniteExists {n} {ψ} exists {p} P = ⊥-elim ( exists lemma ) where --- lemma : (y : Ordinal {n} ) → ¬ ψ y --- lemma y ψy = ( TransFinite {n} {{!!}} {!!} {!!} y ) ψy
--- a/zf.agda Mon Jul 15 19:10:58 2019 +0900 +++ b/zf.agda Sat Jul 20 08:04:20 2019 +0900 @@ -25,6 +25,9 @@ contra-position : {n m : Level } {A : Set n} {B : Set m} → (A → B) → ¬ B → ¬ A contra-position {n} {m} {A} {B} f ¬b a = ¬b ( f a ) +double-neg : {n : Level } {A : Set n} → A → ¬ ¬ A +double-neg A notnot = notnot A + infixr 130 _∧_ infixr 140 _∨_ infixr 150 _⇔_ @@ -64,7 +67,7 @@ field empty : ∀( x : ZFSet ) → ¬ ( ∅ ∋ x ) -- power : ∀ X ∃ A ∀ t ( t ∈ A ↔ t ⊆ X ) ) - power→ : ∀( A t : ZFSet ) → Power A ∋ t → ∀ {x} → _⊆_ t A {x} + power→ : ∀( A t : ZFSet ) → Power A ∋ t → ∀ {x} → t ∋ x → ¬ ¬ ( A ∋ x ) -- _⊆_ t A {x} power← : ∀( A t : ZFSet ) → ( ∀ {x} → _⊆_ t A {x}) → Power A ∋ t -- extensionality : ∀ z ( z ∈ x ⇔ z ∈ y ) ⇒ ∀ w ( x ∈ w ⇔ y ∈ w ) extensionality : { A B : ZFSet } → ( (z : ZFSet) → ( A ∋ z ) ⇔ (B ∋ z) ) → A ≈ B