Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 670:f6a8de486bf3
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 05 Jul 2022 08:22:32 +0900 |
parents | 7d227d624aad |
children | f877150be143 |
files | src/zorn.agda |
diffstat | 1 files changed, 4 insertions(+), 12 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Tue Jul 05 05:43:27 2022 +0900 +++ b/src/zorn.agda Tue Jul 05 08:22:32 2022 +0900 @@ -258,8 +258,8 @@ u<x : u o< x chain∋z : Chain A f mf ay u z -UnionCF : (A : HOD) ( f : Ordinal → Ordinal ) (mf : ≤-monotonic-f A f) {init : Ordinal} (ay : odef A init) (x : Ordinal) (chainf : (z : Ordinal ) → Chain A f mf ay z z ) → HOD -UnionCF A f mf ay x chainf = record { od = record { def = λ z → odef A z ∧ UChain A f mf ay x z } ; odmax = & A ; <odmax = λ {y} sy → ∈∧P→o< sy } +UnionCF : (A : HOD) ( f : Ordinal → Ordinal ) (mf : ≤-monotonic-f A f) {init : Ordinal} (ay : odef A init) (x : Ordinal) → HOD +UnionCF A f mf ay x = record { od = record { def = λ z → odef A z ∧ UChain A f mf ay x z } ; odmax = & A ; <odmax = λ {y} sy → ∈∧P→o< sy } record ZChain ( A : HOD ) ( f : Ordinal → Ordinal ) (mf : ≤-monotonic-f A f) {init : Ordinal} (ay : odef A init) ( z : Ordinal ) : Set (Level.suc n) where chain : HOD @@ -541,7 +541,6 @@ ... | tri< a ¬b ¬c = ⊥-elim ( ¬b refl ) ... | tri≈ ¬a b ¬c = refl ... | tri> ¬a ¬b c = refl - ... | case2 ¬x=sup = ? where -- x is not f y' nor sup of former ZChain from y -- no extention z18 : {a b : Ordinal} → odef (ZChain.chain zc) a → b o< osuc x → (ab : odef A b) → HasPrev A (ZChain.chain zc) ab f ∨ IsSup A (ZChain.chain zc) ab → @@ -553,17 +552,10 @@ ... | case2 b=sup = ⊥-elim ( ¬x=sup record { x<sup = λ {y} zy → subst (λ k → (y ≡ k) ∨ (y << k)) (trans b=x (sym &iso)) (IsSup.x<sup b=sup zy) } ) ... | no ¬ox = zc5 where --- limit ordinal case - -- chainf : (zc : ZChain1 A f mf ay x ) → (z : Ordinal) → z o< x → HOD - -- chainf zc z z<x = ? - -- chainf : (z : Ordinal) → z o< x → HOD - -- chainf z z<x = ZChain.chain ( prev z z<x ) - -- chainq : ( z : Ordinal ) → (z<x : z o< x ) → Chain A f mf ay z ( chainf z z<x ) - -- chainq z z<x = ZChain.chain-uniq ( prev z z<x ) uzc : HOD - uzc = UnionCF A f mf ay x ? + uzc = UnionCF A f mf ay x -- c-mono : {z : Ordinal} {w : Ordinal} → z o≤ w → (w<x : w o< x ) → chainf z ? ⊆' chainf w w<x - -- c-mono {z} {w} z≤w w≤x {i} with trio< z x | trio< w x - -- ... | s | t = {!!} + -- c-mono {z} {w} z≤w w≤x {i} = ? zc5 : ZChain A f mf ay x zc5 with ODC.∋-p O A (* x) ... | no noax = ? where -- ¬ A ∋ p, just skip