Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 404:f7b844af9a50
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 28 Jul 2020 13:34:25 +0900 |
parents | ce2ce3f62023 |
children | 85b328d3b96b |
files | OD.agda |
diffstat | 1 files changed, 18 insertions(+), 5 deletions(-) [+] |
line wrap: on
line diff
--- a/OD.agda Tue Jul 28 10:51:08 2020 +0900 +++ b/OD.agda Tue Jul 28 13:34:25 2020 +0900 @@ -494,7 +494,7 @@ ⊆→o< {x} {y} lt | tri> ¬a ¬b c with (incl lt) (o<-subst c (sym diso) refl ) ... | ttt = ⊥-elim ( o<¬≡ refl (o<-subst ttt diso refl )) --- open import Relation.Binary.HeterogeneousEquality as HE using (_≅_ ) +open import Relation.Binary.HeterogeneousEquality as HE using (_≅_ ) -- postulate f-extensionality : { n m : Level} → HE.Extensionality n m nat→ω-iso : {i : HOD} → (lt : infinite ∋ i ) → nat→ω ( ω→nat i lt ) ≡ i @@ -519,11 +519,24 @@ (od→ord (ord→od x₁ , ord→od x₁)) record {proj1 = pair2 ; proj2 = subst (λ k → odef k (od→ord (ord→od x₁))) (sym oiso) pair1 } ) lemma1 : infinite ∋ ord→od x₁ lemma1 = subst (λ k → odef infinite k) (sym diso) ltd - lemma2 : {x₁ : Ordinal} → {ltd : infinite-d x₁ } → ω→nato ltd ≡ ω→nat (ord→od x₁) (subst (λ k → odef infinite k) (sym diso) ltd) - lemma2 {o∅} {iφ} = {!!} - lemma2 {x₁} {isuc ltd} = cong (λ k → Suc k ) ( lemma2 {_} {ltd} ) + lemma5 : {x y : Ordinal} → od→ord (Union (ord→od y , (ord→od y , ord→od y))) ≡ od→ord (Union (ord→od x , (ord→od x , ord→od x))) → x ≡ y + lemma5 {x} {y} eq = {!!} + lemma3 : {x y : Ordinal} → (ltd : infinite-d x ) (ltd1 : infinite-d y ) → y ≡ x → ltd ≅ ltd1 + lemma3 iφ iφ refl = HE.refl + lemma3 iφ (isuc ltd1) eq = {!!} + lemma3 (isuc ltd) iφ eq = {!!} + lemma3 (isuc {x} ltd) (isuc {y} ltd1) eq with lemma3 ltd ltd1 (lemma5 (sym eq)) + ... | t = HE.cong₂ (λ j k → isuc {j} k ) (HE.≡-to-≅ (lemma5 eq)) t + lemma2 : {x y : Ordinal} → (ltd : infinite-d x ) (ltd1 : infinite-d y ) → y ≡ x → ω→nato ltd ≡ ω→nato ltd1 + lemma2 {x} {y} ltd ltd1 eq = lemma6 eq (lemma3 {x} {y} ltd ltd1 eq) where + lemma6 : {x y : Ordinal} → {ltd : infinite-d x } {ltd1 : infinite-d y } → y ≡ x → ltd ≅ ltd1 → ω→nato ltd ≡ ω→nato ltd1 + lemma6 refl HE.refl = refl lemma : nat→ω (ω→nato ltd) ≡ ord→od x₁ - lemma = trans (cong (λ k → nat→ω k) lemma2) ( prev {ord→od x₁} lemma0 lemma1 ) + lemma = trans (cong (λ k → nat→ω k) (lemma2 {x₁} {_} ltd (subst (λ k → infinite-d k ) (sym diso) ltd) diso ) ) ( prev {ord→od x₁} lemma0 lemma1 ) + +ω→nat-iso : {i : Nat} → ω→nat ( nat→ω i ) (ω∋nat→ω {i}) ≡ i +ω→nat-iso {Zero} = {!!} +ω→nat-iso {Suc i} = {!!} ψiso : {ψ : HOD → Set n} {x y : HOD } → ψ x → x ≡ y → ψ y ψiso {ψ} t refl = t