Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 425:f7d66c84bc26
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 05 Aug 2020 19:37:07 +0900 |
parents | cc7909f86841 |
children | 47aacf417930 |
files | OD.agda OPair.agda cardinal.agda zf-in-agda.html zf-in-agda.ind |
diffstat | 5 files changed, 433 insertions(+), 187 deletions(-) [+] |
line wrap: on
line diff
--- a/OD.agda Sat Aug 01 23:37:10 2020 +0900 +++ b/OD.agda Wed Aug 05 19:37:07 2020 +0900 @@ -143,8 +143,8 @@ _∋_ : ( a x : HOD ) → Set n _∋_ a x = odef a ( & x ) -_c<_ : ( x a : HOD ) → Set n -x c< a = a ∋ x +-- _c<_ : ( x a : HOD ) → Set n +-- x c< a = a ∋ x d→∋ : ( a : HOD ) { x : Ordinal} → odef a x → a ∋ (* x) d→∋ a lt = subst (λ k → odef a k ) (sym &iso) lt @@ -156,8 +156,8 @@ otrans x<a y<x = ordtrans y<x x<a -- If we have reverse of c<→o<, everything becomes Ordinal -o<→c<→HOD=Ord : ( o<→c< : {x y : Ordinal } → x o< y → odef (* y) x ) → {x : HOD } → x ≡ Ord (& x) -o<→c<→HOD=Ord o<→c< {x} = ==→o≡ ( record { eq→ = lemma1 ; eq← = lemma2 } ) where +∈→c<→HOD=Ord : ( o<→c< : {x y : Ordinal } → x o< y → odef (* y) x ) → {x : HOD } → x ≡ Ord (& x) +∈→c<→HOD=Ord o<→c< {x} = ==→o≡ ( record { eq→ = lemma1 ; eq← = lemma2 } ) where lemma1 : {y : Ordinal} → odef x y → odef (Ord (& x)) y lemma1 {y} lt = subst ( λ k → k o< & x ) &iso (c<→o< {* y} {x} (d→∋ x lt)) lemma2 : {y : Ordinal} → odef (Ord (& x)) y → odef x y
--- a/OPair.agda Sat Aug 01 23:37:10 2020 +0900 +++ b/OPair.agda Wed Aug 05 19:37:07 2020 +0900 @@ -18,7 +18,6 @@ open import Relation.Binary.PropositionalEquality open import Data.Nat renaming ( zero to Zero ; suc to Suc ; ℕ to Nat ; _⊔_ to _n⊔_ ) -open inOrdinal O open OD O open OD.OD open OD.HOD @@ -30,7 +29,6 @@ open OrdUtil O open ODUtil O - open _∧_ open _∨_ open Bool
--- a/cardinal.agda Sat Aug 01 23:37:10 2020 +0900 +++ b/cardinal.agda Wed Aug 05 19:37:07 2020 +0900 @@ -49,13 +49,13 @@ ∧ ( (x : Ordinal ) (p q : odef (ZFP A B ) x ) → pi1 (proj1 p) ≡ pi1 (proj1 q) → pi2 (proj1 p) ≡ pi2 (proj1 q) ) } ; odmax = odmax (ZFP A B) ; <odmax = λ lt → <odmax (ZFP A B) (proj1 lt) } -Func∋f : {A B x : HOD} → ( f : HOD → HOD ) → ( (x : HOD ) → A ∋ x → B ∋ f x ) - → def Func (& (Replace A (λ x → < x , f x > ))) -Func∋f = {!!} +-- Func∋f : {A B x : HOD} → ( f : HOD → HOD ) → ( (x : HOD ) → A ∋ x → B ∋ f x ) +-- → def Func (& (Replace A (λ x → < x , f x > ))) +-- Func∋f = {!!} -FuncP∋f : {A B x : HOD} → ( f : HOD → HOD ) → ( (x : HOD ) → A ∋ x → B ∋ f x ) - → odef (FuncP A B) (& (Replace A (λ x → < x , f x > ))) -FuncP∋f = {!!} +-- FuncP∋f : {A B x : HOD} → ( f : HOD → HOD ) → ( (x : HOD ) → A ∋ x → B ∋ f x ) +-- → odef (FuncP A B) (& (Replace A (λ x → < x , f x > ))) +-- FuncP∋f = {!!} -- Func→f : {A B f x : HOD} → def Func (& f) → (x : HOD ) → A ∋ x → ( HOD ∧ ((y : HOD ) → B ∋ y )) -- Func→f = {!!} @@ -68,14 +68,41 @@ -- onto : {A B f : HOD} → def Func (& f) → {!!} -- onto = {!!} +record Injection (A B : Ordinal ) : Set n where + field + i→ : (x : Ordinal ) → odef (* B) x → Ordinal + iA : (x : Ordinal ) → ( lt : odef (* B) x ) → odef (* A) ( i→ x lt ) + iiso : (x y : Ordinal ) → ( ltx : odef (* B) x ) ( lty : odef (* B) y ) → i→ x ltx ≡ i→ y lty → x ≡ y + record Bijection (A B : Ordinal ) : Set n where field - fun→ : Ordinal → Ordinal - fun← : Ordinal → Ordinal - fun→inA : (x : Ordinal) → odef (* A) ( fun→ x ) - fun←inB : (x : Ordinal) → odef (* B) ( fun← x ) - fiso→ : (x : Ordinal ) → odef (* B) x → fun→ ( fun← x ) ≡ x - fiso← : (x : Ordinal ) → odef (* A) x → fun← ( fun→ x ) ≡ x + fun← : (x : Ordinal ) → odef (* A) x → Ordinal + fun→ : (x : Ordinal ) → odef (* B) x → Ordinal + funB : (x : Ordinal ) → ( lt : odef (* A) x ) → odef (* B) ( fun← x lt ) + funA : (x : Ordinal ) → ( lt : odef (* B) x ) → odef (* A) ( fun→ x lt ) + fiso← : (x : Ordinal ) → ( lt : odef (* B) x ) → fun← ( fun→ x lt ) ( funA x lt ) ≡ x + fiso→ : (x : Ordinal ) → ( lt : odef (* A) x ) → fun→ ( fun← x lt ) ( funB x lt ) ≡ x +Bernstein : {a b : Ordinal } → Injection a b → Injection b a → Bijection a b +Bernstein = {!!} + +_=c=_ : ( A B : HOD ) → Set n +A =c= B = Bijection ( & A ) ( & B ) + +_c<_ : ( A B : HOD ) → Set n +A c< B = Injection (& A) (& B) + Card : OD Card = record { def = λ x → (a : Ordinal) → a o< x → ¬ Bijection a x } + +record Cardinal (a : Ordinal ) : Set (suc n) where + field + card : Ordinal + ciso : Bijection a card + cmax : (x : Ordinal) → card o< x → ¬ Bijection a x + +Cantor1 : { u : HOD } → u c< Power u +Cantor1 = {!!} + +Cantor2 : { u : HOD } → ¬ ( u =c= Power u ) +Cantor2 = {!!}
--- a/zf-in-agda.html Sat Aug 01 23:37:10 2020 +0900 +++ b/zf-in-agda.html Wed Aug 05 19:37:07 2020 +0900 @@ -823,9 +823,9 @@ <p> <pre> - ¬OD-order : ( od→ord : OD → Ordinal ) - → ( ord→od : Ordinal → OD ) → ( { x y : OD } → def y ( od→ord x ) → od→ord x o< od→ord y) → ⊥ - ¬OD-order od→ord ord→od c<→o< = ? + ¬OD-order : ( & : OD → Ordinal ) + → ( * : Ordinal → OD ) → ( { x y : OD } → def y ( & x ) → & x o< & y) → ⊥ + ¬OD-order & * c<→o< = ? </pre> Actualy we can prove this contrdction, so we need some restrctions on OD. @@ -862,10 +862,10 @@ <p> <pre> - od→ord : HOD → Ordinal - ord→od : Ordinal → HOD - oiso : {x : HOD } → ord→od ( od→ord x ) ≡ x - diso : {x : Ordinal } → od→ord ( ord→od x ) ≡ x + & : HOD → Ordinal + * : Ordinal → HOD + oiso : {x : HOD } → * ( & x ) ≡ x + diso : {x : Ordinal } → & ( * x ) ≡ x </pre> we can check an HOD is an element of the OD using def. @@ -875,14 +875,14 @@ <pre> _∋_ : ( A x : HOD ) → Set n - _∋_ A x = def (od A) ( od→ord x ) + _∋_ A x = def (od A) ( & x ) </pre> In ψ : Ordinal → Set, if A is a record { def = λ x → ψ x } , then <p> <pre> - A x = def A ( od→ord x ) = ψ (od→ord x) + A x = def A ( & x ) = ψ (& x) </pre> They say the existing of the mappings can be proved in Classical Set Theory, but we @@ -898,7 +898,7 @@ <p> <pre> - def (od y) ( od→ord x ) + def (od y) ( & x ) </pre> An elements of HOD should be defined before the HOD, that is, an ordinal corresponding an elements @@ -907,15 +907,15 @@ <p> <pre> - c<→o< : {x y : HOD } → def (od y) ( od→ord x ) → od→ord x o< od→ord y - ⊆→o≤ : {y z : HOD } → ({x : Ordinal} → def (od y) x → def (od z) x ) → od→ord y o< osuc (od→ord z) + c<→o< : {x y : HOD } → def (od y) ( & x ) → & x o< & y + ⊆→o≤ : {y z : HOD } → ({x : Ordinal} → def (od y) x → def (od z) x ) → & y o< osuc (& z) </pre> If wa assumes reverse order preservation, <p> <pre> - o<→c< : {n : Level} {x y : Ordinal } → x o< y → def (ord→od y) x + o<→c< : {n : Level} {x y : Ordinal } → x o< y → def (* y) x </pre> ∀ x ∋ ∅ becomes true, which manes all OD becomes Ordinals in the model. @@ -986,7 +986,7 @@ data infinite-d : ( x : Ordinal ) → Set n where iφ : infinite-d o∅ isuc : {x : Ordinal } → infinite-d x → - infinite-d (od→ord ( Union (ord→od x , (ord→od x , ord→od x ) ) )) + infinite-d (& ( Union (* x , (* x , * x ) ) )) </pre> Union (x , ( x , x )) should be an direct successor of x, but we cannot prove it in our model. @@ -1026,7 +1026,7 @@ <pre> _,_ : HOD → HOD → HOD - x , y = record { od = record { def = λ t → (t ≡ od→ord x ) ∨ ( t ≡ od→ord y ) } ; odmax = ? ; <odmax = ? } + x , y = record { od = record { def = λ t → (t ≡ & x ) ∨ ( t ≡ & y ) } ; odmax = ? ; <odmax = ? } </pre> It is easy to find out odmax from odmax of x and y. @@ -1044,7 +1044,7 @@ pair→ x y t p = ? </pre> -In this program, type of p is ( x , y ) ∋ t , that is def ( x , y ) that is, (t ≡ od→ord x ) ∨ ( t ≡ od→ord y ) . +In this program, type of p is ( x , y ) ∋ t , that is def ( x , y ) that is, (t ≡ & x ) ∨ ( t ≡ & y ) . <p> Since _∨_ is a data, it can be developed as (C-c C-c : agda2-make-case ). <p> @@ -1067,7 +1067,7 @@ <p> <pre> - t≡x : od→ord t ≡ od→ord x + t≡x : & t ≡ & x </pre> which is shown by an Agda command (C-C C-E : agda2-show-context ). @@ -1124,8 +1124,8 @@ <p> <pre> - eq→ (extensionality0 {A} {B} eq ) {x} d = odef-iso {A} {B} (sym diso) (proj1 (eq (ord→od x))) d - eq← (extensionality0 {A} {B} eq ) {x} d = odef-iso {B} {A} (sym diso) (proj2 (eq (ord→od x))) d + eq→ (extensionality0 {A} {B} eq ) {x} d = odef-iso {A} {B} (sym diso) (proj1 (eq (* x))) d + eq← (extensionality0 {A} {B} eq ) {x} d = odef-iso {B} {A} (sym diso) (proj2 (eq (* x))) d </pre> where @@ -1138,9 +1138,20 @@ </pre> <hr/> -<h2><a name="content045">Validity of Axiom of Extensionality</a></h2> +<h2><a name="content045">The uniqueness of HOD</a></h2> <p> +To prove extensionality or other we need ==→o≡. +<p> +Since we have ==→o≡ , so odmax have to be unique. We should have odmaxmin in HOD. +We can calculate the minimum using sup if we have bound but it is tedius. +Only Select has non minimum odmax. We have the same problem on 'def' itself, but we leave it, that is we assume the +assumption of predicates of Agda have a unique form, it is something like the +functional extensionality assumption. +<p> + +<hr/> +<h2><a name="content046">Validity of Axiom of Extensionality</a></h2> If we can derive (w ∋ A) ⇔ (w ∋ B) from od A == od B, the axiom becomes valid, but it seems impossible, so we assumes <p> @@ -1159,7 +1170,7 @@ </pre> <hr/> -<h2><a name="content046">Axiom of infinity</a></h2> +<h2><a name="content047">Axiom of infinity</a></h2> <p> It means it has ω as a ZF Set. It is ususally written like this. @@ -1180,17 +1191,17 @@ </pre> <hr/> -<h2><a name="content047">ω in HOD</a></h2> +<h2><a name="content048">ω in HOD</a></h2> <p> -To define an OD which arrows od→ord (Union (x , (x , x))) as a predicate, we can use Agda data structure. +To define an OD which arrows & (Union (x , (x , x))) as a predicate, we can use Agda data structure. <p> <pre> data infinite-d : ( x : Ordinal ) → Set n where iφ : infinite-d o∅ isuc : {x : Ordinal } → infinite-d x → - infinite-d (od→ord ( Union (ord→od x , (ord→od x , ord→od x ) ) )) + infinite-d (& ( Union (* x , (* x , * x ) ) )) </pre> It has simular structure as Data.Nat in Agda, and it defines a correspendence of HOD and the data structure. Now @@ -1202,20 +1213,48 @@ infinite = record { od = record { def = λ x → infinite-d x } ; odmax = ? ; <odmax = ? } </pre> -So what is the bound of ω? Analyzing the definition, it depends on the value of od→ord (x , x), which -cannot know the aboslute value. This is because we don't have constructive definition of od→ord : HOD → Ordinal. +So what is the bound of ω? Analyzing the definition, it depends on the value of & (x , x), which +cannot know the aboslute value. This is because we don't have constructive definition of & : HOD → Ordinal. <p> <hr/> -<h2><a name="content048">HOD Ordrinal mapping</a></h2> +<h2><a name="content049">HOD and Agda data structure</a></h2> +We may have +<p> + +<pre> + a HOD <=> Agda Data Strucure + +</pre> +as a data in Agda. Ex. +<p> + +<pre> + data ord-pair : (p : Ordinal) → Set n where + pair : (x y : Ordinal ) → ord-pair ( & ( < * x , * y > ) ) + ZFProduct : OD + ZFProduct = record { def = λ x → ord-pair x } + pi1 : { p : Ordinal } → ord-pair p → Ordinal + pi1 ( pair x y) = x + π1 : { p : HOD } → def ZFProduct (& p) → HOD + π1 lt = * (pi1 lt ) + p-iso : { x : HOD } → (p : def ZFProduct (& x) ) → < π1 p , π2 p > ≡ x + p-iso {x} p = ord≡→≡ (op-iso p) + +</pre> + +<hr/> +<h2><a name="content050">HOD Ordrinal mapping</a></h2> + +<p> We have large freedom on HOD. We reqest no minimality on odmax, so it may arbitrary larger. The address of HOD can be larger at least it have to be larger than the content's address. We only have a relative ordering such as <p> <pre> - pair-xx<xy : {x y : HOD} → od→ord (x , x) o< osuc (od→ord (x , y) ) - pair<y : {x y : HOD } → y ∋ x → od→ord (x , x) o< osuc (od→ord y) + pair-xx<xy : {x y : HOD} → & (x , x) o< osuc (& (x , y) ) + pair<y : {x y : HOD } → y ∋ x → & (x , x) o< osuc (& y) </pre> Basicaly, we cannot know the concrete address of HOD other than empty set. @@ -1225,7 +1264,7 @@ <p> <hr/> -<h2><a name="content049">Possible restriction on HOD</a></h2> +<h2><a name="content051">Possible restriction on HOD</a></h2> We need some restriction on the HOD-Ordinal mapping. Simple one is this. <p> @@ -1239,7 +1278,7 @@ <pre> hod-ord< : {x : HOD } → Set n - hod-ord< {x} = od→ord x o< next (odmax x) + hod-ord< {x} = & x o< next (odmax x) </pre> next : Ordinal → Ordinal means imediate next limit ordinal of x. It supress unecessary space between address of HOD and @@ -1250,45 +1289,45 @@ <p> <hr/> -<h2><a name="content050">increment pase of address of HOD</a></h2> +<h2><a name="content052">increment pase of address of HOD</a></h2> Assuming, hod-ord< , we have <p> <pre> - pair-ord< : {x : HOD } → ( {y : HOD } → od→ord y o< next (odmax y) ) → od→ord ( x , x ) o< next (od→ord x) - pair-ord< {x} ho< = subst (λ k → od→ord (x , x) o< k ) lemmab0 lemmab1 where - lemmab0 : next (odmax (x , x)) ≡ next (od→ord x) + pair-ord< : {x : HOD } → ( {y : HOD } → & y o< next (odmax y) ) → & ( x , x ) o< next (& x) + pair-ord< {x} ho< = subst (λ k → & (x , x) o< k ) lemmab0 lemmab1 where + lemmab0 : next (odmax (x , x)) ≡ next (& x) </pre> So the address of ( x , x) and Union (x , (x , x)) is restricted in the limit ordinal. This makes ω bound. We can prove <p> <pre> - infinite-bound : ({x : HOD} → od→ord x o< next (odmax x)) → {y : Ordinal} → infinite-d y → y o< next o∅ + infinite-bound : ({x : HOD} → & x o< next (odmax x)) → {y : Ordinal} → infinite-d y → y o< next o∅ </pre> -We also notice that if we have od→ord (x , x) ≡ osuc (od→ord x), c<→o< can be drived from ⊆→o≤ . +We also notice that if we have & (x , x) ≡ osuc (& x), c<→o< can be drived from ⊆→o≤ . <p> <pre> - ⊆→o≤→c<→o< : ({x : HOD} → od→ord (x , x) ≡ osuc (od→ord x) ) - → ({y z : HOD } → ({x : Ordinal} → def (od y) x → def (od z) x ) → od→ord y o< osuc (od→ord z) ) - → {x y : HOD } → def (od y) ( od→ord x ) → od→ord x o< od→ord y + ⊆→o≤→c<→o< : ({x : HOD} → & (x , x) ≡ osuc (& x) ) + → ({y z : HOD } → ({x : Ordinal} → def (od y) x → def (od z) x ) → & y o< osuc (& z) ) + → {x y : HOD } → def (od y) ( & x ) → & x o< & y </pre> <hr/> -<h2><a name="content051">Non constructive assumptions so far</a></h2> +<h2><a name="content053">Non constructive assumptions so far</a></h2> <p> <pre> - od→ord : HOD → Ordinal - ord→od : Ordinal → HOD - c<→o< : {x y : HOD } → def (od y) ( od→ord x ) → od→ord x o< od→ord y - ⊆→o≤ : {y z : HOD } → ({x : Ordinal} → def (od y) x → def (od z) x ) → od→ord y o< osuc (od→ord z) - oiso : {x : HOD } → ord→od ( od→ord x ) ≡ x - diso : {x : Ordinal } → od→ord ( ord→od x ) ≡ x + & : HOD → Ordinal + * : Ordinal → HOD + c<→o< : {x y : HOD } → def (od y) ( & x ) → & x o< & y + ⊆→o≤ : {y z : HOD } → ({x : Ordinal} → def (od y) x → def (od z) x ) → & y o< osuc (& z) + oiso : {x : HOD } → * ( & x ) ≡ x + diso : {x : Ordinal } → & ( * x ) ≡ x ==→o≡ : {x y : HOD } → (od x == od y) → x ≡ y sup-o : (A : HOD) → ( ( x : Ordinal ) → def (od A) x → Ordinal ) → Ordinal sup-o< : (A : HOD) → { ψ : ( x : Ordinal ) → def (od A) x → Ordinal } → ∀ {x : Ordinal } → (lt : def (od A) x ) → ψ x lt o< sup-o A ψ @@ -1296,7 +1335,7 @@ </pre> <hr/> -<h2><a name="content052">Axiom which have negation form</a></h2> +<h2><a name="content054">Axiom which have negation form</a></h2> <p> @@ -1320,7 +1359,7 @@ <p> <hr/> -<h2><a name="content053">Union </a></h2> +<h2><a name="content055">Union </a></h2> The original form of the Axiom of Union is <p> @@ -1341,8 +1380,8 @@ <pre> Union : HOD → HOD - Union U = record { od = record { def = λ x → ¬ (∀ (u : Ordinal ) → ¬ ((odef U u) ∧ (odef (ord→od u) x))) } - ; odmax = osuc (od→ord U) ; <odmax = ? } + Union U = record { od = record { def = λ x → ¬ (∀ (u : Ordinal ) → ¬ ((odef U u) ∧ (odef (* u) x))) } + ; odmax = osuc (& U) ; <odmax = ? } </pre> The bound of Union is evident, but its proof is rather complicated. @@ -1352,12 +1391,12 @@ <pre> union→ : (X z u : HOD) → (X ∋ u) ∧ (u ∋ z) → Union X ∋ z - union→ X z u xx not = ⊥-elim ( not (od→ord u) ( record { proj1 = proj1 xx - ; proj2 = subst ( λ k → odef k (od→ord z)) (sym oiso) (proj2 xx) } )) + union→ X z u xx not = ⊥-elim ( not (& u) ( record { proj1 = proj1 xx + ; proj2 = subst ( λ k → odef k (& z)) (sym oiso) (proj2 xx) } )) union← : (X z : HOD) (X∋z : Union X ∋ z) → ¬ ( (u : HOD ) → ¬ ((X ∋ u) ∧ (u ∋ z ))) union← X z UX∋z = FExists _ lemma UX∋z where - lemma : {y : Ordinal} → odef X y ∧ odef (ord→od y) (od→ord z) → ¬ ((u : HOD) → ¬ (X ∋ u) ∧ (u ∋ z)) - lemma {y} xx not = not (ord→od y) record { proj1 = subst ( λ k → odef X k ) (sym diso) (proj1 xx ) ; proj2 = proj2 xx } + lemma : {y : Ordinal} → odef X y ∧ odef (* y) (& z) → ¬ ((u : HOD) → ¬ (X ∋ u) ∧ (u ∋ z)) + lemma {y} xx not = not (* y) record { proj1 = subst ( λ k → odef X k ) (sym diso) (proj1 xx ) ; proj2 = proj2 xx } </pre> where @@ -1375,7 +1414,7 @@ <p> <hr/> -<h2><a name="content054">Axiom of replacement</a></h2> +<h2><a name="content056">Axiom of replacement</a></h2> We can replace the elements of a set by a function and it becomes a set. From the book, <p> @@ -1404,7 +1443,7 @@ <pre> in-codomain : (X : OD ) → ( ψ : OD → OD ) → OD - in-codomain X ψ = record { def = λ x → ¬ ( (y : Ordinal ) → ¬ ( def X y ∧ ( x ≡ od→ord (ψ (ord→od y ))))) } + in-codomain X ψ = record { def = λ x → ¬ ( (y : Ordinal ) → ¬ ( def X y ∧ ( x ≡ & (ψ (* y ))))) } </pre> in-codomain is a logical relation-ship, and it is written in OD. @@ -1412,10 +1451,10 @@ <pre> Replace : HOD → (HOD → HOD) → HOD - Replace X ψ = record { od = record { def = λ x → (x o< sup-o X (λ y X∋y → od→ord (ψ (ord→od y)))) ∧ def (in-codomain X ψ) x } + Replace X ψ = record { od = record { def = λ x → (x o< sup-o X (λ y X∋y → & (ψ (* y)))) ∧ def (in-codomain X ψ) x } ; odmax = rmax ; <odmax = rmax<} where rmax : Ordinal - rmax = sup-o X (λ y X∋y → od→ord (ψ (ord→od y))) + rmax = sup-o X (λ y X∋y → & (ψ (* y))) rmax< : {y : Ordinal} → (y o< rmax) ∧ def (in-codomain X ψ) y → y o< rmax rmax< lt = proj1 lt @@ -1426,7 +1465,7 @@ <p> <hr/> -<h2><a name="content055">Validity of Power Set Axiom</a></h2> +<h2><a name="content057">Validity of Power Set Axiom</a></h2> The original Power Set Axiom is this. <p> @@ -1484,7 +1523,7 @@ Ord : ( a : Ordinal ) → OD Ord a = record { def = λ y → y o< a } Def : (A : OD ) → OD - Def A = Ord ( sup-o ( λ x → od→ord ( ZFSubset A (ord→od x )) ) ) + Def A = Ord ( sup-o ( λ x → & ( ZFSubset A (* x )) ) ) </pre> This is slight larger than Power A, so we replace all elements x by A ∩ x (some of them may empty). @@ -1492,7 +1531,7 @@ <pre> Power : OD → OD - Power A = Replace (Def (Ord (od→ord A))) ( λ x → A ∩ x ) + Power A = Replace (Def (Ord (& A))) ( λ x → A ∩ x ) </pre> Creating Power Set of Ordinals is rather easy, then we use replacement axiom on A ∩ x since we have this. @@ -1519,7 +1558,7 @@ </pre> <hr/> -<h2><a name="content056">Axiom of regularity, Axiom of choice, ε-induction</a></h2> +<h2><a name="content058">Axiom of regularity, Axiom of choice, ε-induction</a></h2> <p> Axiom of regularity requires non self intersectable elements (which is called minimum), if we @@ -1531,8 +1570,8 @@ <pre> minimal : (x : HOD ) → ¬ (x == od∅ )→ OD - x∋minimal : (x : HOD ) → ( ne : ¬ (x == od∅ ) ) → def x ( od→ord ( minimal x ne ) ) - minimal-1 : (x : HOD ) → ( ne : ¬ (x == od∅ ) ) → (y : HOD ) → ¬ ( def (minimal x ne) (od→ord y)) ∧ (def x (od→ord y) ) + x∋minimal : (x : HOD ) → ( ne : ¬ (x == od∅ ) ) → def x ( & ( minimal x ne ) ) + minimal-1 : (x : HOD ) → ( ne : ¬ (x == od∅ ) ) → (y : HOD ) → ¬ ( def (minimal x ne) (& y)) ∧ (def x (& y) ) </pre> We can avoid this using ε-induction (a predicate is valid on all set if the predicate is true on some element of set). @@ -1566,7 +1605,7 @@ <p> <hr/> -<h2><a name="content057">Axiom of choice and Law of Excluded Middle</a></h2> +<h2><a name="content059">Axiom of choice and Law of Excluded Middle</a></h2> In our model, since HOD has a mapping to Ordinals, it has evident order, which means well ordering theorem is valid, but it don't have correct form of the axiom yet. They say well ordering axiom is equivalent to the axiom of choice, but it requires law of the exclude middle. @@ -1586,23 +1625,23 @@ <p> <hr/> -<h2><a name="content058">Relation-ship among ZF axiom</a></h2> +<h2><a name="content060">Relation-ship among ZF axiom</a></h2> <img src="fig/axiom-dependency.svg"> <p> <hr/> -<h2><a name="content059">Non constructive assumption in our model</a></h2> +<h2><a name="content061">Non constructive assumption in our model</a></h2> mapping between HOD and Ordinals <p> <pre> - od→ord : HOD → Ordinal - ord→od : Ordinal → OD - oiso : {x : HOD } → ord→od ( od→ord x ) ≡ x - diso : {x : Ordinal } → od→ord ( ord→od x ) ≡ x - c<→o< : {x y : HOD } → def y ( od→ord x ) → od→ord x o< od→ord y - ⊆→o≤ : {y z : HOD } → ({x : Ordinal} → def (od y) x → def (od z) x ) → od→ord y o< osuc (od→ord z) + & : HOD → Ordinal + * : Ordinal → OD + oiso : {x : HOD } → * ( & x ) ≡ x + diso : {x : Ordinal } → & ( * x ) ≡ x + c<→o< : {x y : HOD } → def y ( & x ) → & x o< & y + ⊆→o≤ : {y z : HOD } → ({x : Ordinal} → def (od y) x → def (od z) x ) → & y o< osuc (& z) </pre> Equivalence on OD @@ -1624,7 +1663,7 @@ <p> <pre> - hod-ord< : {x : HOD} → od→ord x o< next (odmax x) + hod-ord< : {x : HOD} → & x o< next (odmax x) </pre> Axiom of choice and strong axiom of regularity. @@ -1632,15 +1671,102 @@ <pre> minimal : (x : HOD ) → ¬ (x =h= od∅ )→ HOD - x∋minimal : (x : HOD ) → ( ne : ¬ (x =h= od∅ ) ) → odef x ( od→ord ( minimal x ne ) ) - minimal-1 : (x : HOD ) → ( ne : ¬ (x =h= od∅ ) ) → (y : HOD ) → ¬ ( odef (minimal x ne) (od→ord y)) ∧ (odef x (od→ord y) ) + x∋minimal : (x : HOD ) → ( ne : ¬ (x =h= od∅ ) ) → odef x ( & ( minimal x ne ) ) + minimal-1 : (x : HOD ) → ( ne : ¬ (x =h= od∅ ) ) → (y : HOD ) → ¬ ( odef (minimal x ne) (& y)) ∧ (odef x (& y) ) </pre> <hr/> -<h2><a name="content060">So it this correct?</a></h2> +<h2><a name="content062">V </a></h2> <p> +The cumulative hierarchy +<pre> + V 0 := ∅ + V α + 1 := P ( V α ) + V α := ⋃ { V β | β < α } + +</pre> +Using TransFinite induction +<p> + +<pre> + V : ( β : Ordinal ) → HOD + V β = TransFinite V1 β where + V1 : (x : Ordinal ) → ( ( y : Ordinal) → y o< x → HOD ) → HOD + V1 x V0 with trio< x o∅ + V1 x V0 | tri< a ¬b ¬c = ⊥-elim ( ¬x<0 a) + V1 x V0 | tri≈ ¬a refl ¬c = Ord o∅ + V1 x V0 | tri> ¬a ¬b c with Oprev-p x + V1 x V0 | tri> ¬a ¬b c | yes p = Power ( V0 (Oprev.oprev p ) (subst (λ k → _ o< k) (Oprev.oprev=x p) <-osuc )) + V1 x V0 | tri> ¬a ¬b c | no ¬p = + record { od = record { def = λ y → (y o< x ) ∧ ((lt : y o< x ) → odef (V0 y lt) x ) } ; + odmax = x; <odmax = λ {x} lt → proj1 lt } + +</pre> +In our system, clearly V ⊆ HOD。 +<p> + +<hr/> +<h2><a name="content063">L</a></h2> +The constructible Sets +<pre> + L 0 := ∅ + L α + 1 := Df (L α) -- Definable Power Set + V α := ⋃ { L β | β < α } + +</pre> +What is Df? In our system, Power x is definable by Sup. +<p> + +<pre> + record Definitions : Set (suc n) where + field + Definition : HOD → HOD + open Definitions + Df : Definitions → (x : HOD) → HOD + Df D x = Power x ∩ Definition D x + +</pre> + +<hr/> +<h2><a name="content064">L</a></h2> + +<p> + +<pre> + L : ( β : Ordinal ) → Definitions → HOD + L β D = TransFinite L1 β where + L1 : (x : Ordinal ) → ( ( y : Ordinal) → y o< x → HOD ) → HOD + L1 x L0 with trio< x o∅ + L1 x L0 | tri< a ¬b ¬c = ⊥-elim ( ¬x<0 a) + L1 x L0 | tri≈ ¬a refl ¬c = Ord o∅ + L1 x L0 | tri> ¬a ¬b c with Oprev-p x + L1 x L0 | tri> ¬a ¬b c | yes p = Df D ( L0 (Oprev.oprev p ) (subst (λ k → _ o< k) (Oprev.oprev=x p) <-osuc )) + L1 x L0 | tri> ¬a ¬b c | no ¬p = + record { od = record { def = λ y → (y o< x ) ∧ ((lt : y o< x ) → odef (L0 y lt) x ) } ; + odmax = x; <odmax = λ {x} lt → proj1 lt } + +</pre> + +<hr/> +<h2><a name="content065">V=L</a></h2> + +<p> + +<pre> + V=L0 : Set (suc n) + V=L0 = (x : Ordinal) → V x ≡ L x record { Definition = λ y → y } + +</pre> +is obvious. Definitions should have some restrictions, such as it includes Nat. +<p> + +<hr/> +<h2><a name="content066">Some other ...</a></h2> + +<hr/> +<h2><a name="content067">So it this correct?</a></h2> Our axiom are syntactically the same in the text book, but negations are slightly different. <p> If we assumes excluded middle, these are exactly same. @@ -1658,7 +1784,7 @@ <p> <hr/> -<h2><a name="content061">How to use Agda Set Theory</a></h2> +<h2><a name="content068">How to use Agda Set Theory</a></h2> Assuming record ZF, classical set theory can be developed. If necessary, axiom of choice can be postulated or assuming law of excluded middle. <p> @@ -1669,7 +1795,7 @@ <p> <hr/> -<h2><a name="content062">Topos and Set Theory</a></h2> +<h2><a name="content069">Topos and Set Theory</a></h2> Topos is a mathematical structure in Category Theory, which is a Cartesian closed category which has a sub-object classifier. <p> @@ -1687,7 +1813,7 @@ <p> <hr/> -<h2><a name="content063">Cardinal number and Continuum hypothesis</a></h2> +<h2><a name="content070">Cardinal number and Continuum hypothesis</a></h2> Axiom of choice is required to define cardinal number <p> definition of cardinal number is not yet done @@ -1705,7 +1831,7 @@ </pre> <hr/> -<h2><a name="content064">Filter</a></h2> +<h2><a name="content071">Filter</a></h2> <p> filter is a dual of ideal on boolean algebra or lattice. Existence on natural number @@ -1728,7 +1854,7 @@ <p> <hr/> -<h2><a name="content065">Programming Mathematics</a></h2> +<h2><a name="content072">Programming Mathematics</a></h2> Mathematics is a functional programming in Agda where proof is a value of a variable. The mathematical structure are <p> @@ -1753,7 +1879,7 @@ <p> <hr/> -<h2><a name="content066">link</a></h2> +<h2><a name="content073">link</a></h2> Summer school of foundation of mathematics (in Japanese)<br> <a href="https://www.sci.shizuoka.ac.jp/~math/yorioka/ss2019/">https://www.sci.shizuoka.ac.jp/~math/yorioka/ss2019/</a> <p> Foundation of axiomatic set theory (in Japanese)<br> <a href="https://www.sci.shizuoka.ac.jp/~math/yorioka/ss2019/sakai0.pdf">https://www.sci.shizuoka.ac.jp/~math/yorioka/ss2019/sakai0.pdf @@ -1818,29 +1944,36 @@ <li><a href="#content042"> pair in OD</a> <li><a href="#content043"> Validity of Axiom of Pair</a> <li><a href="#content044"> Equality of OD and Axiom of Extensionality </a> -<li><a href="#content045"> Validity of Axiom of Extensionality</a> -<li><a href="#content046"> Axiom of infinity</a> -<li><a href="#content047"> ω in HOD</a> -<li><a href="#content048"> HOD Ordrinal mapping</a> -<li><a href="#content049"> Possible restriction on HOD</a> -<li><a href="#content050"> increment pase of address of HOD</a> -<li><a href="#content051"> Non constructive assumptions so far</a> -<li><a href="#content052"> Axiom which have negation form</a> -<li><a href="#content053"> Union </a> -<li><a href="#content054"> Axiom of replacement</a> -<li><a href="#content055"> Validity of Power Set Axiom</a> -<li><a href="#content056"> Axiom of regularity, Axiom of choice, ε-induction</a> -<li><a href="#content057"> Axiom of choice and Law of Excluded Middle</a> -<li><a href="#content058"> Relation-ship among ZF axiom</a> -<li><a href="#content059"> Non constructive assumption in our model</a> -<li><a href="#content060"> So it this correct?</a> -<li><a href="#content061"> How to use Agda Set Theory</a> -<li><a href="#content062"> Topos and Set Theory</a> -<li><a href="#content063"> Cardinal number and Continuum hypothesis</a> -<li><a href="#content064"> Filter</a> -<li><a href="#content065"> Programming Mathematics</a> -<li><a href="#content066"> link</a> +<li><a href="#content045"> The uniqueness of HOD</a> +<li><a href="#content046"> Validity of Axiom of Extensionality</a> +<li><a href="#content047"> Axiom of infinity</a> +<li><a href="#content048"> ω in HOD</a> +<li><a href="#content049"> HOD and Agda data structure</a> +<li><a href="#content050"> HOD Ordrinal mapping</a> +<li><a href="#content051"> Possible restriction on HOD</a> +<li><a href="#content052"> increment pase of address of HOD</a> +<li><a href="#content053"> Non constructive assumptions so far</a> +<li><a href="#content054"> Axiom which have negation form</a> +<li><a href="#content055"> Union </a> +<li><a href="#content056"> Axiom of replacement</a> +<li><a href="#content057"> Validity of Power Set Axiom</a> +<li><a href="#content058"> Axiom of regularity, Axiom of choice, ε-induction</a> +<li><a href="#content059"> Axiom of choice and Law of Excluded Middle</a> +<li><a href="#content060"> Relation-ship among ZF axiom</a> +<li><a href="#content061"> Non constructive assumption in our model</a> +<li><a href="#content062"> V </a> +<li><a href="#content063"> L</a> +<li><a href="#content064"> L</a> +<li><a href="#content065"> V=L</a> +<li><a href="#content066"> Some other ...</a> +<li><a href="#content067"> So it this correct?</a> +<li><a href="#content068"> How to use Agda Set Theory</a> +<li><a href="#content069"> Topos and Set Theory</a> +<li><a href="#content070"> Cardinal number and Continuum hypothesis</a> +<li><a href="#content071"> Filter</a> +<li><a href="#content072"> Programming Mathematics</a> +<li><a href="#content073"> link</a> </ol> -<hr/> Shinji KONO / Fri Jul 17 13:42:02 2020 +<hr/> Shinji KONO / Tue Aug 4 18:09:41 2020 </body></html>
--- a/zf-in-agda.ind Sat Aug 01 23:37:10 2020 +0900 +++ b/zf-in-agda.ind Wed Aug 05 19:37:07 2020 +0900 @@ -588,9 +588,9 @@ Unfortunately this scheme does not work well. As we saw OD includes all Ordinals, which is a maximum of OD, but Ordinals has no maximum at all. So we have a contradction like - ¬OD-order : ( od→ord : OD → Ordinal ) - → ( ord→od : Ordinal → OD ) → ( { x y : OD } → def y ( od→ord x ) → od→ord x o< od→ord y) → ⊥ - ¬OD-order od→ord ord→od c<→o< = ? + ¬OD-order : ( & : OD → Ordinal ) + → ( * : Ordinal → OD ) → ( { x y : OD } → def y ( & x ) → & x o< & y) → ⊥ + ¬OD-order & * c<→o< = ? Actualy we can prove this contrdction, so we need some restrctions on OD. @@ -617,21 +617,21 @@ HOD is a predicate on Ordinals and the solution is bounded by some ordinal. If we have a mapping - od→ord : HOD → Ordinal - ord→od : Ordinal → HOD - oiso : {x : HOD } → ord→od ( od→ord x ) ≡ x - diso : {x : Ordinal } → od→ord ( ord→od x ) ≡ x + & : HOD → Ordinal + * : Ordinal → HOD + oiso : {x : HOD } → * ( & x ) ≡ x + diso : {x : Ordinal } → & ( * x ) ≡ x we can check an HOD is an element of the OD using def. A ∋ x can be define as follows. _∋_ : ( A x : HOD ) → Set n - _∋_ A x = def (od A) ( od→ord x ) + _∋_ A x = def (od A) ( & x ) In ψ : Ordinal → Set, if A is a record { def = λ x → ψ x } , then - A x = def A ( od→ord x ) = ψ (od→ord x) + A x = def A ( & x ) = ψ (& x) They say the existing of the mappings can be proved in Classical Set Theory, but we simply assumes these non constructively. @@ -642,18 +642,18 @@ Ordinals have the order and HOD has a natural order based on inclusion ( def / ∋ ). - def (od y) ( od→ord x ) + def (od y) ( & x ) An elements of HOD should be defined before the HOD, that is, an ordinal corresponding an elements have to be smaller than the corresponding ordinal of the containing OD. We also assumes subset is always smaller. This is necessary to make a limit of Power Set. - c<→o< : {x y : HOD } → def (od y) ( od→ord x ) → od→ord x o< od→ord y - ⊆→o≤ : {y z : HOD } → ({x : Ordinal} → def (od y) x → def (od z) x ) → od→ord y o< osuc (od→ord z) + c<→o< : {x y : HOD } → def (od y) ( & x ) → & x o< & y + ⊆→o≤ : {y z : HOD } → ({x : Ordinal} → def (od y) x → def (od z) x ) → & y o< osuc (& z) If wa assumes reverse order preservation, - o<→c< : {n : Level} {x y : Ordinal } → x o< y → def (ord→od y) x + o<→c< : {n : Level} {x y : Ordinal } → x o< y → def (* y) x ∀ x ∋ ∅ becomes true, which manes all OD becomes Ordinals in the model. @@ -707,7 +707,7 @@ data infinite-d : ( x : Ordinal ) → Set n where iφ : infinite-d o∅ isuc : {x : Ordinal } → infinite-d x → - infinite-d (od→ord ( Union (ord→od x , (ord→od x , ord→od x ) ) )) + infinite-d (& ( Union (* x , (* x , * x ) ) )) Union (x , ( x , x )) should be an direct successor of x, but we cannot prove it in our model. @@ -733,7 +733,7 @@ OD is an equation on Ordinals, we can simply write axiom of pair in the OD. _,_ : HOD → HOD → HOD - x , y = record { od = record { def = λ t → (t ≡ od→ord x ) ∨ ( t ≡ od→ord y ) } ; odmax = ? ; <odmax = ? } + x , y = record { od = record { def = λ t → (t ≡ & x ) ∨ ( t ≡ & y ) } ; odmax = ? ; <odmax = ? } It is easy to find out odmax from odmax of x and y. @@ -747,7 +747,7 @@ pair→ x y t p = ? In this program, type of p is ( x , y ) ∋ t , that is -def ( x , y ) that is, (t ≡ od→ord x ) ∨ ( t ≡ od→ord y ) . +def ( x , y ) that is, (t ≡ & x ) ∨ ( t ≡ & y ) . Since _∨_ is a data, it can be developed as (C-c C-c : agda2-make-case ). @@ -762,7 +762,7 @@ The ? in case1 is t == x, so we have to create this from t≡x, which is a name of a variable which type is - t≡x : od→ord t ≡ od→ord x + t≡x : & t ≡ & x which is shown by an Agda command (C-C C-E : agda2-show-context ). @@ -803,8 +803,8 @@ Actual proof is rather complicated. - eq→ (extensionality0 {A} {B} eq ) {x} d = odef-iso {A} {B} (sym diso) (proj1 (eq (ord→od x))) d - eq← (extensionality0 {A} {B} eq ) {x} d = odef-iso {B} {A} (sym diso) (proj2 (eq (ord→od x))) d + eq→ (extensionality0 {A} {B} eq ) {x} d = odef-iso {A} {B} (sym diso) (proj1 (eq (* x))) d + eq← (extensionality0 {A} {B} eq ) {x} d = odef-iso {B} {A} (sym diso) (proj2 (eq (* x))) d where @@ -849,12 +849,12 @@ --ω in HOD -To define an OD which arrows od→ord (Union (x , (x , x))) as a predicate, we can use Agda data structure. +To define an OD which arrows & (Union (x , (x , x))) as a predicate, we can use Agda data structure. data infinite-d : ( x : Ordinal ) → Set n where iφ : infinite-d o∅ isuc : {x : Ordinal } → infinite-d x → - infinite-d (od→ord ( Union (ord→od x , (ord→od x , ord→od x ) ) )) + infinite-d (& ( Union (* x , (* x , * x ) ) )) It has simular structure as Data.Nat in Agda, and it defines a correspendence of HOD and the data structure. Now we can define HOD like this. @@ -862,8 +862,32 @@ infinite : HOD infinite = record { od = record { def = λ x → infinite-d x } ; odmax = ? ; <odmax = ? } -So what is the bound of ω? Analyzing the definition, it depends on the value of od→ord (x , x), which -cannot know the aboslute value. This is because we don't have constructive definition of od→ord : HOD → Ordinal. +So what is the bound of ω? Analyzing the definition, it depends on the value of & (x , x), which +cannot know the aboslute value. This is because we don't have constructive definition of & : HOD → Ordinal. + +--HOD and Agda data structure + +We may have + + a HOD <=> Agda Data Strucure + +as a data in Agda. Ex. + + data ord-pair : (p : Ordinal) → Set n where + pair : (x y : Ordinal ) → ord-pair ( & ( < * x , * y > ) ) + + ZFProduct : OD + ZFProduct = record { def = λ x → ord-pair x } + + pi1 : { p : Ordinal } → ord-pair p → Ordinal + pi1 ( pair x y) = x + + π1 : { p : HOD } → def ZFProduct (& p) → HOD + π1 lt = * (pi1 lt ) + + p-iso : { x : HOD } → (p : def ZFProduct (& x) ) → < π1 p , π2 p > ≡ x + p-iso {x} p = ord≡→≡ (op-iso p) + --HOD Ordrinal mapping @@ -871,8 +895,8 @@ The address of HOD can be larger at least it have to be larger than the content's address. We only have a relative ordering such as - pair-xx<xy : {x y : HOD} → od→ord (x , x) o< osuc (od→ord (x , y) ) - pair<y : {x y : HOD } → y ∋ x → od→ord (x , x) o< osuc (od→ord y) + pair-xx<xy : {x y : HOD} → & (x , x) o< osuc (& (x , y) ) + pair<y : {x y : HOD } → y ∋ x → & (x , x) o< osuc (& y) Basicaly, we cannot know the concrete address of HOD other than empty set. @@ -888,7 +912,7 @@ It depends on infinite-d and put no assuption on the other similar construction. A more general one may be hod-ord< : {x : HOD } → Set n - hod-ord< {x} = od→ord x o< next (odmax x) + hod-ord< {x} = & x o< next (odmax x) next : Ordinal → Ordinal means imediate next limit ordinal of x. It supress unecessary space between address of HOD and its bound. @@ -900,28 +924,28 @@ Assuming, hod-ord< , we have - pair-ord< : {x : HOD } → ( {y : HOD } → od→ord y o< next (odmax y) ) → od→ord ( x , x ) o< next (od→ord x) - pair-ord< {x} ho< = subst (λ k → od→ord (x , x) o< k ) lemmab0 lemmab1 where - lemmab0 : next (odmax (x , x)) ≡ next (od→ord x) + pair-ord< : {x : HOD } → ( {y : HOD } → & y o< next (odmax y) ) → & ( x , x ) o< next (& x) + pair-ord< {x} ho< = subst (λ k → & (x , x) o< k ) lemmab0 lemmab1 where + lemmab0 : next (odmax (x , x)) ≡ next (& x) So the address of ( x , x) and Union (x , (x , x)) is restricted in the limit ordinal. This makes ω bound. We can prove - infinite-bound : ({x : HOD} → od→ord x o< next (odmax x)) → {y : Ordinal} → infinite-d y → y o< next o∅ + infinite-bound : ({x : HOD} → & x o< next (odmax x)) → {y : Ordinal} → infinite-d y → y o< next o∅ -We also notice that if we have od→ord (x , x) ≡ osuc (od→ord x), c<→o< can be drived from ⊆→o≤ . +We also notice that if we have & (x , x) ≡ osuc (& x), c<→o< can be drived from ⊆→o≤ . - ⊆→o≤→c<→o< : ({x : HOD} → od→ord (x , x) ≡ osuc (od→ord x) ) - → ({y z : HOD } → ({x : Ordinal} → def (od y) x → def (od z) x ) → od→ord y o< osuc (od→ord z) ) - → {x y : HOD } → def (od y) ( od→ord x ) → od→ord x o< od→ord y + ⊆→o≤→c<→o< : ({x : HOD} → & (x , x) ≡ osuc (& x) ) + → ({y z : HOD } → ({x : Ordinal} → def (od y) x → def (od z) x ) → & y o< osuc (& z) ) + → {x y : HOD } → def (od y) ( & x ) → & x o< & y --Non constructive assumptions so far - od→ord : HOD → Ordinal - ord→od : Ordinal → HOD - c<→o< : {x y : HOD } → def (od y) ( od→ord x ) → od→ord x o< od→ord y - ⊆→o≤ : {y z : HOD } → ({x : Ordinal} → def (od y) x → def (od z) x ) → od→ord y o< osuc (od→ord z) - oiso : {x : HOD } → ord→od ( od→ord x ) ≡ x - diso : {x : Ordinal } → od→ord ( ord→od x ) ≡ x + & : HOD → Ordinal + * : Ordinal → HOD + c<→o< : {x y : HOD } → def (od y) ( & x ) → & x o< & y + ⊆→o≤ : {y z : HOD } → ({x : Ordinal} → def (od y) x → def (od z) x ) → & y o< osuc (& z) + oiso : {x : HOD } → * ( & x ) ≡ x + diso : {x : Ordinal } → & ( * x ) ≡ x ==→o≡ : {x y : HOD } → (od x == od y) → x ≡ y sup-o : (A : HOD) → ( ( x : Ordinal ) → def (od A) x → Ordinal ) → Ordinal sup-o< : (A : HOD) → { ψ : ( x : Ordinal ) → def (od A) x → Ordinal } → ∀ {x : Ordinal } → (lt : def (od A) x ) → ψ x lt o< sup-o A ψ @@ -955,20 +979,20 @@ The definition of Union in HOD is like this. Union : HOD → HOD - Union U = record { od = record { def = λ x → ¬ (∀ (u : Ordinal ) → ¬ ((odef U u) ∧ (odef (ord→od u) x))) } - ; odmax = osuc (od→ord U) ; <odmax = ? } + Union U = record { od = record { def = λ x → ¬ (∀ (u : Ordinal ) → ¬ ((odef U u) ∧ (odef (* u) x))) } + ; odmax = osuc (& U) ; <odmax = ? } The bound of Union is evident, but its proof is rather complicated. Proof of validity is straight forward. union→ : (X z u : HOD) → (X ∋ u) ∧ (u ∋ z) → Union X ∋ z - union→ X z u xx not = ⊥-elim ( not (od→ord u) ( record { proj1 = proj1 xx - ; proj2 = subst ( λ k → odef k (od→ord z)) (sym oiso) (proj2 xx) } )) + union→ X z u xx not = ⊥-elim ( not (& u) ( record { proj1 = proj1 xx + ; proj2 = subst ( λ k → odef k (& z)) (sym oiso) (proj2 xx) } )) union← : (X z : HOD) (X∋z : Union X ∋ z) → ¬ ( (u : HOD ) → ¬ ((X ∋ u) ∧ (u ∋ z ))) union← X z UX∋z = FExists _ lemma UX∋z where - lemma : {y : Ordinal} → odef X y ∧ odef (ord→od y) (od→ord z) → ¬ ((u : HOD) → ¬ (X ∋ u) ∧ (u ∋ z)) - lemma {y} xx not = not (ord→od y) record { proj1 = subst ( λ k → odef X k ) (sym diso) (proj1 xx ) ; proj2 = proj2 xx } + lemma : {y : Ordinal} → odef X y ∧ odef (* y) (& z) → ¬ ((u : HOD) → ¬ (X ∋ u) ∧ (u ∋ z)) + lemma {y} xx not = not (* y) record { proj1 = subst ( λ k → odef X k ) (sym diso) (proj1 xx ) ; proj2 = proj2 xx } where @@ -999,15 +1023,15 @@ negation form of existential quantifier in the definition. in-codomain : (X : OD ) → ( ψ : OD → OD ) → OD - in-codomain X ψ = record { def = λ x → ¬ ( (y : Ordinal ) → ¬ ( def X y ∧ ( x ≡ od→ord (ψ (ord→od y ))))) } + in-codomain X ψ = record { def = λ x → ¬ ( (y : Ordinal ) → ¬ ( def X y ∧ ( x ≡ & (ψ (* y ))))) } in-codomain is a logical relation-ship, and it is written in OD. Replace : HOD → (HOD → HOD) → HOD - Replace X ψ = record { od = record { def = λ x → (x o< sup-o X (λ y X∋y → od→ord (ψ (ord→od y)))) ∧ def (in-codomain X ψ) x } + Replace X ψ = record { od = record { def = λ x → (x o< sup-o X (λ y X∋y → & (ψ (* y)))) ∧ def (in-codomain X ψ) x } ; odmax = rmax ; <odmax = rmax<} where rmax : Ordinal - rmax = sup-o X (λ y X∋y → od→ord (ψ (ord→od y))) + rmax = sup-o X (λ y X∋y → & (ψ (* y))) rmax< : {y : Ordinal} → (y o< rmax) ∧ def (in-codomain X ψ) y → y o< rmax rmax< lt = proj1 lt @@ -1055,12 +1079,12 @@ Ord a = record { def = λ y → y o< a } Def : (A : OD ) → OD - Def A = Ord ( sup-o ( λ x → od→ord ( ZFSubset A (ord→od x )) ) ) + Def A = Ord ( sup-o ( λ x → & ( ZFSubset A (* x )) ) ) This is slight larger than Power A, so we replace all elements x by A ∩ x (some of them may empty). Power : OD → OD - Power A = Replace (Def (Ord (od→ord A))) ( λ x → A ∩ x ) + Power A = Replace (Def (Ord (& A))) ( λ x → A ∩ x ) Creating Power Set of Ordinals is rather easy, then we use replacement axiom on A ∩ x since we have this. @@ -1085,8 +1109,8 @@ choice also becomes valid. minimal : (x : HOD ) → ¬ (x == od∅ )→ OD - x∋minimal : (x : HOD ) → ( ne : ¬ (x == od∅ ) ) → def x ( od→ord ( minimal x ne ) ) - minimal-1 : (x : HOD ) → ( ne : ¬ (x == od∅ ) ) → (y : HOD ) → ¬ ( def (minimal x ne) (od→ord y)) ∧ (def x (od→ord y) ) + x∋minimal : (x : HOD ) → ( ne : ¬ (x == od∅ ) ) → def x ( & ( minimal x ne ) ) + minimal-1 : (x : HOD ) → ( ne : ¬ (x == od∅ ) ) → (y : HOD ) → ¬ ( def (minimal x ne) (& y)) ∧ (def x (& y) ) We can avoid this using ε-induction (a predicate is valid on all set if the predicate is true on some element of set). Assuming law of exclude middle, they say axiom of regularity will be proved, but we haven't check it yet. @@ -1132,12 +1156,12 @@ mapping between HOD and Ordinals - od→ord : HOD → Ordinal - ord→od : Ordinal → OD - oiso : {x : HOD } → ord→od ( od→ord x ) ≡ x - diso : {x : Ordinal } → od→ord ( ord→od x ) ≡ x - c<→o< : {x y : HOD } → def y ( od→ord x ) → od→ord x o< od→ord y - ⊆→o≤ : {y z : HOD } → ({x : Ordinal} → def (od y) x → def (od z) x ) → od→ord y o< osuc (od→ord z) + & : HOD → Ordinal + * : Ordinal → OD + oiso : {x : HOD } → * ( & x ) ≡ x + diso : {x : Ordinal } → & ( * x ) ≡ x + c<→o< : {x y : HOD } → def y ( & x ) → & x o< & y + ⊆→o≤ : {y z : HOD } → ({x : Ordinal} → def (od y) x → def (od z) x ) → & y o< osuc (& z) Equivalence on OD @@ -1150,13 +1174,77 @@ In order to have bounded ω, - hod-ord< : {x : HOD} → od→ord x o< next (odmax x) + hod-ord< : {x : HOD} → & x o< next (odmax x) Axiom of choice and strong axiom of regularity. minimal : (x : HOD ) → ¬ (x =h= od∅ )→ HOD - x∋minimal : (x : HOD ) → ( ne : ¬ (x =h= od∅ ) ) → odef x ( od→ord ( minimal x ne ) ) - minimal-1 : (x : HOD ) → ( ne : ¬ (x =h= od∅ ) ) → (y : HOD ) → ¬ ( odef (minimal x ne) (od→ord y)) ∧ (odef x (od→ord y) ) + x∋minimal : (x : HOD ) → ( ne : ¬ (x =h= od∅ ) ) → odef x ( & ( minimal x ne ) ) + minimal-1 : (x : HOD ) → ( ne : ¬ (x =h= od∅ ) ) → (y : HOD ) → ¬ ( odef (minimal x ne) (& y)) ∧ (odef x (& y) ) + +--V + +The cumulative hierarchy + V 0 := ∅ + V α + 1 := P ( V α ) + V α := ⋃ { V β | β < α } + +Using TransFinite induction + + V : ( β : Ordinal ) → HOD + V β = TransFinite V1 β where + V1 : (x : Ordinal ) → ( ( y : Ordinal) → y o< x → HOD ) → HOD + V1 x V0 with trio< x o∅ + V1 x V0 | tri< a ¬b ¬c = ⊥-elim ( ¬x<0 a) + V1 x V0 | tri≈ ¬a refl ¬c = Ord o∅ + V1 x V0 | tri> ¬a ¬b c with Oprev-p x + V1 x V0 | tri> ¬a ¬b c | yes p = Power ( V0 (Oprev.oprev p ) (subst (λ k → _ o< k) (Oprev.oprev=x p) <-osuc )) + V1 x V0 | tri> ¬a ¬b c | no ¬p = + record { od = record { def = λ y → (y o< x ) ∧ ((lt : y o< x ) → odef (V0 y lt) x ) } ; + odmax = x; <odmax = λ {x} lt → proj1 lt } + +In our system, clearly V ⊆ HOD。 + +--L + +The constructible Sets + L 0 := ∅ + L α + 1 := Df (L α) -- Definable Power Set + V α := ⋃ { L β | β < α } + +What is Df? In our system, Power x is definable by Sup. + + record Definitions : Set (suc n) where + field + Definition : HOD → HOD + + open Definitions + + Df : Definitions → (x : HOD) → HOD + Df D x = Power x ∩ Definition D x + +--L + + L : ( β : Ordinal ) → Definitions → HOD + L β D = TransFinite L1 β where + L1 : (x : Ordinal ) → ( ( y : Ordinal) → y o< x → HOD ) → HOD + L1 x L0 with trio< x o∅ + L1 x L0 | tri< a ¬b ¬c = ⊥-elim ( ¬x<0 a) + L1 x L0 | tri≈ ¬a refl ¬c = Ord o∅ + L1 x L0 | tri> ¬a ¬b c with Oprev-p x + L1 x L0 | tri> ¬a ¬b c | yes p = Df D ( L0 (Oprev.oprev p ) (subst (λ k → _ o< k) (Oprev.oprev=x p) <-osuc )) + L1 x L0 | tri> ¬a ¬b c | no ¬p = + record { od = record { def = λ y → (y o< x ) ∧ ((lt : y o< x ) → odef (L0 y lt) x ) } ; + odmax = x; <odmax = λ {x} lt → proj1 lt } + +--V=L + + V=L0 : Set (suc n) + V=L0 = (x : Ordinal) → V x ≡ L x record { Definition = λ y → y } + +is obvious. Definitions should have some restrictions, such as it includes Nat. + +--Some other ... --So it this correct?