Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 671:f877150be143
fix
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 08 Jul 2022 13:31:19 +0900 |
parents | f6a8de486bf3 |
children | 230266cf612d |
files | src/zorn.agda |
diffstat | 1 files changed, 9 insertions(+), 6 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Tue Jul 05 08:22:32 2022 +0900 +++ b/src/zorn.agda Fri Jul 08 13:31:19 2022 +0900 @@ -246,9 +246,6 @@ ch-init : (x z : Ordinal) → x ≡ o∅ → FClosure A f y z → Chain A f mf ay x z ch-is-sup : {x z : Ordinal } ( ax : odef A x ) → ( is-sup : (x1 w : Ordinal) → x1 o< x → Chain A f mf ay x1 w → w << x ) → ( fc : FClosure A f x z ) → Chain A f mf ay x z - ch-noax : {x z p : Ordinal } ( ax : ¬ odef A x ) → p o< x → ( prev : Chain A f mf ay p z ) → Chain A f mf ay x z - ch-nosup : {x z p : Ordinal } ( ax : odef A x ) - → ( nosup : ¬ ( (x1 w : Ordinal) → x1 o< x → Chain A f mf ay x1 w → w << x ) ) → ( prev : Chain A f mf ay p z ) → Chain A f mf ay x z -- Union of supf z which o< x -- @@ -256,14 +253,17 @@ field u : Ordinal u<x : u o< x - chain∋z : Chain A f mf ay u z + chain∋z : Chain A f mf ay u z -- it inclues initial case ch-init UnionCF : (A : HOD) ( f : Ordinal → Ordinal ) (mf : ≤-monotonic-f A f) {init : Ordinal} (ay : odef A init) (x : Ordinal) → HOD UnionCF A f mf ay x = record { od = record { def = λ z → odef A z ∧ UChain A f mf ay x z } ; odmax = & A ; <odmax = λ {y} sy → ∈∧P→o< sy } record ZChain ( A : HOD ) ( f : Ordinal → Ordinal ) (mf : ≤-monotonic-f A f) {init : Ordinal} (ay : odef A init) ( z : Ordinal ) : Set (Level.suc n) where + field + sup : Ordinal + sup<x : sup o≤ z chain : HOD - chain = record { od = record { def = λ x → Chain A f mf ay z x } ; odmax = (& A) ; <odmax = ? } + chain = record { od = record { def = λ x → odef A x ∧ Chain A f mf ay sup x } ; odmax = & A ; <odmax = λ {y} sy → ∈∧P→o< sy } field chainf : (w : Ordinal) → Chain A f mf ay z w chain⊆A : chain ⊆' A @@ -556,6 +556,10 @@ uzc = UnionCF A f mf ay x -- c-mono : {z : Ordinal} {w : Ordinal} → z o≤ w → (w<x : w o< x ) → chainf z ? ⊆' chainf w w<x -- c-mono {z} {w} z≤w w≤x {i} = ? + uz-total : IsTotalOrderSet uzc + uz-total {a} {b} x y = uz01 ? ? where + uz01 : (Chain A f mf ay ? (& a)) → ? → Tri (a < b) (a ≡ b) (b < a) + uz01 = ? zc5 : ZChain A f mf ay x zc5 with ODC.∋-p O A (* x) ... | no noax = ? where -- ¬ A ∋ p, just skip @@ -586,7 +590,6 @@ u-mono {z} {w} z≤w w≤x {i} with trio< z x | trio< w x ... | s | t = {!!} - SZ : ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) → {y : Ordinal} (ay : odef A y) → ZChain A f mf ay (& A) SZ f mf {y} ay = TransFinite {λ z → ZChain A f mf ay z } (λ x → ind f mf ay x ) (& A)