Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 1149:f8a30e568eca
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 16 Jan 2023 22:43:09 +0900 |
parents | d39c79bb71f0 |
children | fe0129c40745 |
files | src/Topology.agda |
diffstat | 1 files changed, 20 insertions(+), 4 deletions(-) [+] |
line wrap: on
line diff
--- a/src/Topology.agda Mon Jan 16 14:01:45 2023 +0900 +++ b/src/Topology.agda Mon Jan 16 22:43:09 2023 +0900 @@ -229,7 +229,8 @@ -- Compact data Finite-∪ (S : HOD) : Ordinal → Set n where - fin-e : {x : Ordinal } → * x ⊆ S → Finite-∪ S x + fin-∅ : Finite-∪ S o∅ + fin-e : {x : Ordinal } → odef S x → Finite-∪ S x fin-∪ : {x y : Ordinal } → Finite-∪ S x → Finite-∪ S y → Finite-∪ S (& (* x ∪ * y)) record Compact {L : HOD} (top : Topology L) : Set n where @@ -250,7 +251,7 @@ fip01 : {X : Ordinal } → (xcp : * X covers L) → (* o∅) covers L fip01 xcp = record { cover = λ Lx → ⊥-elim (fip02 Lx) ; P∋cover = λ Lx → ⊥-elim (fip02 Lx) ; isCover = λ Lx → ⊥-elim (fip02 Lx) } fip00 : {X : Ordinal} (xo : * X ⊆ OS top) (xcp : * X covers L) → Finite-∪ (* X) o∅ - fip00 {X} xo xcp = fin-e ( λ {x} 0x → ⊥-elim (¬x<0 (subst (λ k → odef k x) o∅≡od∅ 0x) ) ) + fip00 {X} xo xcp = fin-∅ ... | tri> ¬a ¬b 0<L = record { finCover = finCover ; isCover = isCover1 ; isFinite = isFinite } where -- set of coset of X CX : {X : Ordinal} → * X ⊆ OS top → Ordinal @@ -311,13 +312,28 @@ cex {X} ox oc = & ( ODC.minimal O Cex (fip00 ox oc)) CXfip : {X : Ordinal } → (ox : * X ⊆ OS top) → (oc : * X covers L) → CFIP (cex ox oc) CXfip {X} ox oc = ODC.x∋minimal O Cex (fip00 ox oc) + -- + -- Subbase (* CCX) s -- Finite-∪ (* X) (replaced s) + -- sa ∩ sb ≡ s ( L \ sa ) ∪ (L \ sb) ≡ (replaced s) + -- CCX ∋ s (replaced s) ∋ ( L \ s ) + -- + -- Subbase (* (cex ox oc)) s -- Finite-∪ (* X) (finCover xo xcp) + -- sa ∩ sb ( L \ sa ) ∪ (L \ sb) + record Cover+Int {X : Ordinal } (ox : * X ⊆ OS top) (oc : * X covers L) : Set n where + field + x w : Ordinal + is-CS : * x ⊆ CS top + x+w=L : (* x ∪ * w ) =h= L + sx : Subbase (* (cex ox oc)) w + fc : Finite-∪ (* X) x + -- -- this defines finite cover finCover : {X : Ordinal} → * X ⊆ OS top → * X covers L → Ordinal finCover {X} ox oc = & ( Replace' (* (cex ox oc)) (λ z xz → L \ z )) -- create Finite-∪ from cex isFinite : {X : Ordinal} (xo : * X ⊆ OS top) (xcp : * X covers L) → Finite-∪ (* X) (finCover xo xcp) - isFinite {X} xo xcp = {!!} where - fip30 : {y z : Ordinal } → Subbase (* y) o∅ → Finite-∪ (* X) z + isFinite {X} xo xcp = ? where + fip30 : ( x y : Ordinal ) → * x ⊆ CS top → Subbase (* x) y → Finite-∪ (* X) (& (Replace' (* x) (λ z xz → L \ z ))) fip30 = ? -- is also a cover isCover1 : {X : Ordinal} (xo : * X ⊆ OS top) (xcp : * X covers L) → * (finCover xo xcp) covers L