Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 1145:f8c3537e68a6
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 16 Jan 2023 02:22:03 +0900 |
parents | 73b256c5474b |
children | 1966127fc14f |
files | src/Topology.agda |
diffstat | 1 files changed, 13 insertions(+), 27 deletions(-) [+] |
line wrap: on
line diff
--- a/src/Topology.agda Sun Jan 15 23:02:36 2023 +0900 +++ b/src/Topology.agda Mon Jan 16 02:22:03 2023 +0900 @@ -206,8 +206,8 @@ record _covers_ ( P q : HOD ) : Set n where field cover : {x : Ordinal } → odef q x → Ordinal - P∋cover : {x : Ordinal } → {lt : odef q x} → odef P (cover lt) - isCover : {x : Ordinal } → {lt : odef q x} → odef (* (cover lt)) x + P∋cover : {x : Ordinal } → (lt : odef q x) → odef P (cover lt) + isCover : {x : Ordinal } → (lt : odef q x) → odef (* (cover lt)) x open _covers_ @@ -280,7 +280,7 @@ cex : {X : Ordinal } → * X ⊆ OS top → * X covers L → Ordinal cex {X} ox oc = & ( ODC.minimal O Cex fip00) where fip00 : ¬ ( Cex =h= od∅ ) - fip00 cex=0 = fip03 (FIP.is-limit fip (CCX ox) fip02 fip07 ) fip09 where + fip00 cex=0 = ⊥-elim (fip09 fip25 fip20) where fip03 : {x z : Ordinal } → odef (* x) z → (¬ odef (* x) z) → ⊥ fip03 {x} {z} xz nxz = nxz xz fip02 : {C x : Ordinal} → * C ⊆ * (CX ox) → Subbase (* C) x → o∅ o< x @@ -290,30 +290,16 @@ ... | tri≈ ¬a b ¬c = ⊥-elim (¬x<0 ( _==_.eq→ cex=0 record { is-CS = fip10 ; y = C ; sy = subst (λ k → Subbase (* C) k) b sc } )) where fip10 : * C ⊆ CS top fip10 {w} cw = CCX ox ( C<CX cw ) - fip01 : Ordinal - fip01 = FIP.limit fip (CCX ox) fip02 - fip11 : {w : Ordinal } → {Lw : odef L w} → ¬ ( odef (* (cover oc Lw)) w ) - fip11 {w} {Lw} pw = ? where - fip15 : odef (* X) (cover oc Lw) - fip15 = P∋cover oc {w} {Lw} - fip13 : HOD - fip13 = L \ * w - fip14 : odef (* (CX ox)) (& ( L \ * w )) - fip14 = ? - fip12 : odef ( L \ * w ) fip01 - fip12 = subst (λ k → odef k fip01 ) *iso ( FIP.is-limit fip (CCX ox) fip02 fip14 ) - fip10 : odef ? fip01 - fip10 = FIP.is-limit fip (CCX ox) fip02 ? - fip08 : odef L fip01 - fip08 = FIP.L∋limit fip (CCX ox) fip02 ? - fip05 : odef (CS top) fip01 - fip05 = ? - fip07 : odef (* (CX ox)) ( cover oc fip08 ) - fip07 = ? - fip09 : ¬ odef (* (cover oc fip08)) (FIP.limit fip (CCX ox) fip02) - fip09 = ? - fip04 : Ordinal - fip04 = cover oc (cs⊆L top (subst₂ (λ j k → odef j k ) refl (sym &iso) fip05) (FIP.is-limit fip (CCX ox) ? ?) ) + fip25 : odef L( FIP.limit fip (CCX ox) fip02 ) + fip25 = FIP.L∋limit fip (CCX ox) fip02 ? + fip20 : {y : Ordinal } → (Xy : odef (* X) y) → ¬ ( odef (* y) ( FIP.limit fip (CCX ox) fip02 )) + fip20 {y} Xy yl = proj2 fip21 yl where + fip22 : odef (* (CX ox)) (& ( L \ * y )) + fip22 = subst (λ k → odef k (& ( L \ * y ))) (sym *iso) record { z = y ; az = Xy ; x=ψz = refl } + fip21 : odef (L \ * y) ( FIP.limit fip (CCX ox) fip02 ) + fip21 = subst (λ k → odef k ( FIP.limit fip (CCX ox) fip02 ) ) *iso ( FIP.is-limit fip (CCX ox) fip02 fip22 ) + fip09 : {z : Ordinal } → odef L z → ¬ ( {y : Ordinal } → (Xy : odef (* X) y) → ¬ ( odef (* y) z )) + fip09 {z} Lz nc = nc ( P∋cover oc Lz ) (subst (λ k → odef (* (cover oc Lz)) k) refl (isCover oc _ )) ¬CXfip : {X : Ordinal } → (ox : * X ⊆ OS top) → (oc : * X covers L) → * (cex ox oc) ⊆ * (CX ox) → Subbase (* (cex ox oc)) o∅ ¬CXfip {X} ox oc = {!!} where fip04 : odef Cex (cex ox oc)