Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 108:f91e425b341d
dead end?
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 18 Jun 2019 22:01:15 +0900 |
parents | 745bee73b444 |
children | b44817bbaf03 |
files | ordinal-definable.agda |
diffstat | 1 files changed, 29 insertions(+), 10 deletions(-) [+] |
line wrap: on
line diff
--- a/ordinal-definable.agda Sun Jun 16 19:55:37 2019 +0900 +++ b/ordinal-definable.agda Tue Jun 18 22:01:15 2019 +0900 @@ -84,6 +84,7 @@ ==→o≡ {n} {x} {y} eq | tri> ¬a ¬b c with eq→ eq {y} c ... | t = ⊥-elim ( o<¬≡ y y refl t ) + ∅∨ : { n : Level } → { x y : Ordinal {suc n} } → ( Ord {suc n} x == Ord y ) ∨ ( ¬ ( Ord x == Ord y ) ) ∅∨ {n} {x} {y} with trio< x y ∅∨ {n} {x} {y} | tri< a ¬b ¬c = case2 ( λ eq → ¬b ( ==→o≡ eq ) ) @@ -109,6 +110,8 @@ -- this one cannot be proved because if we have this OD and Ordinal has one to one corespondence -- oc-lemma2 : { n : Level } → { x a : OD {n} } → { oa : Ordinal {n} } → oa o< od→ord (record { def = λ y → y o< oa }) → ⊥ +-- this is not allowed in our case. ( avoid one-to-one of Ord and OD ) +-- Ord=ord→od : {n : Level} → { x : Ordinal {n} } → Ord x ≡ ord→od x _c≤_ : {n : Level} → OD {n} → OD {n} → Set (suc n) a c≤ b = (a ≡ b) ∨ ( b ∋ a ) @@ -198,6 +201,10 @@ o≡→== : {n : Level} → { x y : Ordinal {n} } → x ≡ y → ord→od x == ord→od y o≡→== {n} {x} {.x} refl = eq-refl +O≡→== : {n : Level} → { x y : Ordinal {n} } → x ≡ y → Ord x == Ord y +O≡→== {n} {x} {.x} refl = eq-refl + + >→¬< : {x y : Nat } → (x < y ) → ¬ ( y < x ) >→¬< (s≤s x<y) (s≤s y<x) = >→¬< x<y y<x @@ -208,6 +215,8 @@ o<→o> {n} {x} {y} eq lt with ==→o≡ {n} eq ... | refl = o<¬≡ _ _ refl lt +==-def-r : {n : Level } {x y z : Ordinal {suc n} } → (Ord x == Ord y) → def (Ord x) z → def (Ord y) z +==-def-r {n} {x} {y} {z} eq z>x = eq→ eq z>x o<→¬== : {n : Level} → { x y : Ordinal {suc n} } → x o< y → ¬ (Ord x == Ord y ) o<→¬== {n} {x} {y} lt eq = o<→o> {n} eq lt @@ -257,7 +266,7 @@ ZFSubset A x = record { def = λ y → def A y ∧ def x y } Def : {n : Level} → (A : OD {suc n}) → OD {suc n} -Def {n} A = record { def = λ y → y o< ( sup-o ( λ x → od→ord ( ZFSubset A (ord→od x )))) } +Def {n} A = ord→od ( sup-o ( λ x → od→ord ( ZFSubset A (ord→od x )) ) ) -- Constructible Set on α L : {n : Level} → (α : Ordinal {suc n}) → OD {suc n} @@ -266,6 +275,13 @@ L {n} record { lv = (Suc lx) ; ord = (Φ (Suc lx)) } = -- Union ( L α ) record { def = λ y → osuc y o< (od→ord (L {n} (record { lv = lx ; ord = Φ lx }) )) } +Ordsuc : {n : Level} → Ordinal {suc n} → OD {suc n} +Ordsuc x = record { def = λ y → y o< osuc x } +OrdSubset : {n : Level} →(A x : Ordinal {suc n} ) → OD {suc n} +OrdSubset A x = record { def = λ y → (y o< A) ∧ (y o< x ) } +OrdDef : {n : Level} → (A : Ordinal {suc n}) → OD {suc n} +OrdDef A = record { def = λ y → y o< ( sup-o ( λ x → od→ord ( OrdSubset A x))) } + omega : {n : Level} → Ordinal {n} omega = record { lv = Suc Zero ; ord = Φ 1 } @@ -334,19 +350,22 @@ empty x (case1 ()) empty x (case2 ()) - power→Ord : (A t : Ordinal) → Power (Ord A) ∋ (Ord t) → {x : OD} → Ord t ∋ x → Ord A ∋ x + power→Ord : (A t : Ordinal) → OrdDef {suc n} A ∋ (Ord t) → {x : OD} → Ord t ∋ x → Ord A ∋ x power→Ord A t P∋t {x} t∋x = proj1 lemma-s where minsup : OD - minsup = ZFSubset (Ord A) ( ord→od ( sup-x (λ x → od→ord ( ZFSubset (Ord A) (ord→od x))))) - lemma-t : csuc minsup ∋ Ord t - lemma-t = ? -- o<→c< (sup-lb P∋t) - lemma-s : ZFSubset (Ord A) ( ord→od ( sup-x (λ x → od→ord ( ZFSubset (Ord A) (ord→od x))))) ∋ x - lemma-s = {!!} - power←Ord : (A t : Ordinal) → ({x : OD} → (Ord t ∋ x → Ord A ∋ x)) → Power (Ord A) ∋ Ord t + minsup = OrdSubset A ( sup-x (λ x → od→ord ( OrdSubset A x))) + lemma-t : Ord (sup-x (λ x → od→ord ( OrdSubset A x))) ∋ Ord t + lemma-t = {!!} -- sup-lb P∋t = (od→ord (OrdSubset A (ord→od (sup-x (λ x₁ → od→ord (OrdSubset A (ord→od x₁))))))) + lemma-s : OrdSubset A ( sup-x (λ x → od→ord ( OrdSubset A x))) ∋ x + lemma-s with osuc-≡< {suc n} ( o<-subst (c<→o< {!!} ) refl diso ) + lemma-s | case1 eq = {!!} + lemma-s | case2 lt = {!!} + power←Ord : (A t : Ordinal) → ({x : OD} → (Ord t ∋ x → Ord A ∋ x)) → OrdDef {suc n} A ∋ Ord t power←Ord = {!!} --- - --- ZFSubset A x = record { def = λ y → def A y ∧ def x y } subset of A - --- Power X = ord→od ( sup-o ( λ x → od→ord ( ZFSubset A (ord→od x )) ) ) Power X is a sup of all subset of A + --- ZFSubset A x = record { def = λ y → def A y ∧ def x y } subset of A + --- Def {n} A = record { def = λ y → y o< ( sup-o ( λ x → od→ord ( ZFSubset A (ord→od x )))) } + --- = Power X = ord→od ( sup-o ( λ x → od→ord ( ZFSubset A (ord→od x )) ) ) Power X is a sup of all subset of A -- -- if Power A ∋ t, from a minimulity of sup, there is osuc ZFSubset A ∋ t -- then ZFSubset A ≡ t or ZFSubset A ∋ t. In the former case ZFSubset A ∋ x implies A ∋ x