Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 1367:f93ef96caeb7
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 21 Jun 2023 12:23:58 +0900 |
parents | 07fe8f8bb6d3 |
children | e5e592584382 |
files | src/bijection.agda |
diffstat | 1 files changed, 23 insertions(+), 12 deletions(-) [+] |
line wrap: on
line diff
--- a/src/bijection.agda Wed Jun 21 10:33:36 2023 +0900 +++ b/src/bijection.agda Wed Jun 21 12:23:58 2023 +0900 @@ -759,25 +759,36 @@ suc (suc (suc i)) ≤⟨ ? ⟩ suc (ca-list (a-list (suc i) cl ai)) ∎ ) where open ≤-Reasoning - del : (i : ℕ) → i ≤ n → (cl : List C) → any-cl (suc i) cl → List C + del : (i : ℕ) → (cl : List C) → any-cl (suc i) cl → List C -- del 0 contains ani 0 del = ? - del-any : (i : ℕ) → i ≤ n → (cl : List C) → any-cl (suc i) cl → any-cl i cl + del-any : (i : ℕ) → (cl : List C) → any-cl (suc i) cl → any-cl i cl del-any = ? - del-ca : (i : ℕ) → (si≤n : i ≤ n ) → (cl : List C) → (a : any-cl (suc i) cl ) - → suc (ca-list cl) ≡ ca-list (del i si≤n cl a) + del-ca : (i : ℕ) → (cl : List C) → (a : any-cl (suc i) cl ) + → suc (ca-list cl) ≡ ca-list (del i cl a) del-ca = ? lem06 : suc n < ca-list (clist (c (suc n))) - lem06 = lem07 _ (clist (c (suc n))) ≤-refl lem09 where - lem07 : (i : ℕ) → (cl : List C) → (si≤n : i ≤ n) → (a : any-cl (suc i) cl) → suc i < ca-list (del i si≤n cl a) + lem06 = lem31 where + lem30 : (i : ℕ) → (cl : List C) → (i≤n : i ≤ suc n) → (a : any-cl (suc i) cl) → suc i < ca-list cl + lem30 i cl i≤n a = begin + suc (suc i) ≤⟨ ? ⟩ + ca-list cl ∎ where + open ≤-Reasoning + lem31 : suc n < ca-list (clist (c (suc n))) + lem31 = lem30 n (clist (c (suc n))) a≤sa (λ j le → clist-any (suc n) j le ) + lem07 : (i : ℕ) → (cl : List C) → (i≤n : i ≤ suc n) → (a : any-cl (suc i) cl) → i < ca-list (del i cl a) lem07 0 cl le a = ? - lem07 (suc i) cl le a = <-trans (s≤s lem08) (subst (λ k → k < ca-list (del (suc i) le cl a) ) - (sym (del-ca (suc i) le cl a)) a<sa) where - lem08 : suc i < ca-list (del (suc i) le cl a) - lem08 = lem07 i (del (suc i) le cl a) (≤-trans a≤sa le) (del-any (suc i) le cl a) + lem07 (suc i) cl le a = sx≤py→x≤y ( begin + suc (suc (suc i)) ≤⟨ ? ⟩ + suc (suc (ca-list cl)) ≡⟨ ? ⟩ + ca-list (del (suc (suc i)) (del (suc i) cl a) ?) ≡⟨ ? ⟩ + suc (ca-list (del (suc i) cl a )) ∎ ) where + open ≤-Reasoning + lem08 : i < ca-list (del (suc i) cl a) + lem08 = lem07 i (del (suc i) cl a) (≤-trans a≤sa le) (del-any (suc i) cl a) lem10 : (n i : ℕ) → i ≤ n → Any (_≡_ (g (f (fun← an i)))) (clist (c n)) lem10 n i le = clist-any n i le - lem09 : any-cl (suc n) (clist (c (suc n))) - lem09 i le = clist-any (suc n) i le + lem09 : any-cl (suc (suc n)) (clist (c (suc (suc n)))) + lem09 i le = clist-any (suc (suc n)) i le n<ca-list : (n : ℕ) → n < ca-list (clist (c n)) n<ca-list n = ?