Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 870:f9fc8da87b5a
..
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 15 Sep 2022 03:32:06 +0900 |
parents | 1ca338c3f09c |
children | 2eaa61279c36 |
files | src/zorn.agda |
diffstat | 1 files changed, 13 insertions(+), 11 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Tue Sep 13 15:26:19 2022 +0900 +++ b/src/zorn.agda Thu Sep 15 03:32:06 2022 +0900 @@ -447,7 +447,7 @@ → IsSup A (UnionCF A f mf ay supf b) ab ∧ (¬ HasPrev A (UnionCF A f mf ay supf b) b f) → supf b ≡ b supf-is-sup : {x : Ordinal } → (x≤z : x o≤ z) → supf x ≡ & (SUP.sup (sup x≤z) ) supf-mono : {x y : Ordinal } → x o≤ y → supf x o≤ supf y - csupf : {b : Ordinal } → supf b o< z → odef (UnionCF A f mf ay supf z) (supf b) + csupf : {b : Ordinal } → supf b o≤ z → odef (UnionCF A f mf ay supf z) (supf b) chain∋init : odef chain y @@ -490,7 +490,6 @@ {y : Ordinal} (ay : odef A y) (zc : ZChain A f mf ay (& A)) ( z : Ordinal ) : Set (Level.suc n) where supf = ZChain.supf zc field - order : {b s z1 : Ordinal} → b o< z → supf s o< supf b → FClosure A f (supf s) z1 → (z1 ≡ supf b) ∨ (z1 << supf b) is-max : {a b : Ordinal } → (ca : odef (UnionCF A f mf ay supf z) a ) → b o< z → (ab : odef A b) → HasPrev A (UnionCF A f mf ay supf z) b f ∨ IsSup A (UnionCF A f mf ay supf z) ab → * a < * b → odef ((UnionCF A f mf ay supf z)) b @@ -633,18 +632,20 @@ s<b = ZChain.supf-inject zc ss<sb s≤<z : s o≤ & A s≤<z = ordtrans s<b b≤z - zc04 : odef (UnionCF A f mf ay supf (supf s)) (supf s) - zc04 = ? ZChain.csupf zc ? - zc03 : odef (UnionCF A f mf ay supf (& A)) (supf s) - zc03 = ZChain.csupf zc ? + zc04 : odef (UnionCF A f mf ay supf (& A)) (supf s) + zc04 = ZChain.csupf zc (o<→≤ (z09 (ZChain.asupf zc))) zc05 : odef (UnionCF A f mf ay supf b) (supf s) zc05 with zc04 ... | ⟪ as , ch-init fc ⟫ = ⟪ as , ch-init fc ⟫ - ... | ⟪ as , ch-is-sup u u<x is-sup fc ⟫ = ⟪ as , ch-is-sup u (zc09 u<x ) is-sup fc ⟫ where + ... | ⟪ as , ch-is-sup u u<x is-sup fc ⟫ = ⟪ as , ch-is-sup u ? is-sup fc ⟫ where + zc07 : FClosure A f (supf u) (supf s) -- supf u ≤ supf s → supf u o≤ supf s + zc07 = fc zc06 : supf u ≡ u zc06 = ChainP.supu=u is-sup - zc09 : u o< supf s → u o< b - zc09 u<s = ordtrans (ZChain.supf-inject zc (subst (λ k → k o< supf s) (sym zc06) u<s)) s<b + zc09 : u o≤ supf s → u o< b + zc09 u≤s with osuc-≡< u≤s + ... | case1 u=ss = ZChain.supf-inject zc (subst (λ k → k o< supf b) (sym (trans zc06 u=ss)) ss<sb ) + ... | case2 u<ss = ordtrans (ZChain.supf-inject zc (subst (λ k → k o< supf s) (sym zc06) u<ss)) s<b csupf-fc {b} {s} {z1} b<z ss≤sb (fsuc x fc) = subst (λ k → odef (UnionCF A f mf ay supf b) k ) (sym &iso) zc04 where zc04 : odef (UnionCF A f mf ay supf b) (f x) zc04 with subst (λ k → odef (UnionCF A f mf ay supf b) k ) &iso (csupf-fc b<z ss≤sb fc ) @@ -654,6 +655,7 @@ order {b} {s} {z1} b<z ss<sb fc = zc04 where zc00 : ( * z1 ≡ SUP.sup (ZChain.sup zc (o<→≤ b<z) )) ∨ ( * z1 < SUP.sup ( ZChain.sup zc (o<→≤ b<z) ) ) zc00 = SUP.x<sup (ZChain.sup zc (o<→≤ b<z) ) (csupf-fc (o<→≤ b<z) ss<sb fc ) + -- supf (supf b) ≡ supf b zc04 : (z1 ≡ supf b) ∨ (z1 << supf b) zc04 with zc00 ... | case1 eq = case1 (subst₂ (λ j k → j ≡ k ) &iso (sym (ZChain.supf-is-sup zc (o<→≤ b<z)) ) (cong (&) eq) ) @@ -858,7 +860,7 @@ no-extension : ( (¬ xSUP (UnionCF A f mf ay supf0 px) x ) ∨ HasPrev A pchain x f) → ZChain A f mf ay x no-extension P = record { supf = supf0 ; asupf = ZChain.asupf zc ; sup = λ lt → STMP.tsup (sup lt ) ; supf-mono = supf-mono - ; order = ? ; sup=u = sup=u ; supf-is-sup = λ lt → STMP.tsup=sup (sup lt) } where + ; sup=u = sup=u ; supf-is-sup = λ lt → STMP.tsup=sup (sup lt) } where zc10 : {z : Ordinal} → OD.def (od pchain) z → OD.def (od pchain1) z zc10 {z} ⟪ az , ch-init fc ⟫ = ⟪ az , ch-init fc ⟫ zc10 {z} ⟪ az , ch-is-sup u1 u1<x u1-is-sup fc ⟫ = ⟪ az , ch-is-sup u1 (ordtrans u1<x (pxo<x op)) u1-is-sup fc ⟫ @@ -1085,7 +1087,7 @@ zc70 pr xsup = ? no-extension : ¬ ( xSUP (UnionCF A f mf ay supf0 x) x ) → ZChain A f mf ay x - no-extension ¬sp=x = record { supf = supf1 ; sup=u = sup=u ; order = ? + no-extension ¬sp=x = record { supf = supf1 ; sup=u = sup=u ; sup = sup ; supf-is-sup = sis ; supf-mono = {!!} ; asupf = ? } where supfu : {u : Ordinal } → ( a : u o< x ) → (z : Ordinal) → Ordinal supfu {u} a z = ZChain.supf (pzc (osuc u) (ob<x lim a)) z