Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 518:fc16a22225d9
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 16 Apr 2022 18:14:48 +0900 |
parents | 7b99c8944df7 |
children | ef5dde91fa80 |
files | src/zorn.agda |
diffstat | 1 files changed, 20 insertions(+), 1 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Sat Apr 16 16:09:14 2022 +0900 +++ b/src/zorn.agda Sat Apr 16 18:14:48 2022 +0900 @@ -334,7 +334,26 @@ (subst (λ k → ic-connect (& k) (IChained.iy (proj2 zc5)) ) (me-elm-refl A x) (IChained.ic (proj2 zc5)) ) ) zc6 : elm x < z zc6 = IsStrictPartialOrder.trans PO {x} {me (proj1 zc3)} {me az} zc7 y<z - ... | yes inifite = case2 (case2 record { c-infinite = {!!} } ) + ... | yes inifite = case2 (case2 record { c-infinite = zc9 } ) where + B : HOD + B = IChainSet {A} (me (subst (OD.def (od A)) (sym &iso) (is-elm x))) + Nx : (y : Ordinal) → odef A y → HOD + Nx y ay = record { od = record { def = λ y → odef A y ∧ IChainSup> A (subst (λ k → odef A k) (sym &iso) ay) } ; odmax = & A + ; <odmax = λ lt → subst (λ k → k o< & A) &iso (c<→o< (d→∋ A (proj1 lt))) } + zc9 : (y : Ordinal) (cy : odef (IChainSet (me (subst (OD.def (od A)) (sym &iso) (is-elm x)))) y) → + IChainSup> A (ic→A∋y A (subst (OD.def (od A)) (sym &iso) (is-elm x)) cy) + zc9 y cy with ODC.∋-p O (IChainSet {A} (me (subst (OD.def (od A)) (sym &iso) (is-elm x)))) (* y) + ... | no not = ⊥-elim (not (subst (λ k → odef (IChainSet {A} (me (subst (OD.def (od A)) (sym &iso) (is-elm x)))) k ) (sym &iso) cy)) + ... | yes cy1 with is-o∅ (& (Nx y (proj1 cy) )) + ... | yes no-next = {!!} + ... | no not = record { y = zc14 ; A∋y = IChainSup>.A∋y (proj2 zc12) ; y>x = zc15 } where + zc13 = ODC.minimal O (Nx y (proj1 cy)) (λ eq → not (=od∅→≡o∅ eq )) + zc12 : odef A (& zc13 ) ∧ IChainSup> A (subst (λ k → odef A k) (sym &iso) (proj1 cy) ) + zc12 = ODC.x∋minimal O (Nx y (proj1 cy)) (λ eq → not (=od∅→≡o∅ eq )) + zc14 : Ordinal + zc14 = IChainSup>.y (proj2 zc12) + zc15 : * y < * ( IChainSup>.y (proj2 (ODC.x∋minimal O (Nx y (proj1 cy)) (λ eq → not (=od∅→≡o∅ eq)))) ) + zc15 = IChainSup>.y>x (proj2 zc12) all-climb-case : { A : HOD } → (0<A : o∅ o< & A) → IsPartialOrderSet A → (( x : Element A) → OSup> A (d→∋ A (is-elm x) ))