Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 326:feeba7fd499a
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 05 Jul 2020 03:45:41 +0900 |
parents | 1a54dbe1ea4c |
children | cde56f704eac |
files | OD.agda Ordinals.agda |
diffstat | 2 files changed, 12 insertions(+), 7 deletions(-) [+] |
line wrap: on
line diff
--- a/OD.agda Sat Jul 04 22:48:49 2020 +0900 +++ b/OD.agda Sun Jul 05 03:45:41 2020 +0900 @@ -330,7 +330,9 @@ lemma3 : {x : HOD} → od→ord (u x) o< osuc (od→ord ( Union (u x , (u x , u x)) )) lemma3 {x} = od⊆→o≤ lemma1 lemma4 : {x : HOD} → od→ord (u x) o< osuc (osuc (od→ord x)) - lemma4 {x} = ordtrans (<odmax (x , x) {!!}) {!!} + lemma4 {x} = ordtrans (<odmax (u x , u x) (case2 refl)) + (subst (λ k → k o< osuc (osuc (od→ord x))) (omax≡ _ _ refl) ( -- odmax (u x , u x) o< osuc (osuc (od→ord x)) + osucc {!!} )) -- osuc (od→ord (u x)) o< osuc (osuc (od→ord x)) lemma : {y : Ordinal} → infinite-d y → y o< next o∅ lemma {y} = TransFinite {λ x → infinite-d x → x o< next o∅ } ind y where ind : (x : Ordinal) → ((z : Ordinal) → z o< x → infinite-d z → z o< (next o∅)) →
--- a/Ordinals.agda Sat Jul 04 22:48:49 2020 +0900 +++ b/Ordinals.agda Sun Jul 05 03:45:41 2020 +0900 @@ -111,7 +111,7 @@ proj1 (osuc2 x y) ox<ooy | case2 ox<oy = ordtrans <-osuc ox<oy _o≤_ : Ordinal → Ordinal → Set n - a o≤ b = (a ≡ b) ∨ ( a o< b ) + a o≤ b = a o< osuc b -- (a ≡ b) ∨ ( a o< b ) xo<ab : {oa ob : Ordinal } → ( {ox : Ordinal } → ox o< oa → ox o< ob ) → oa o< osuc ob @@ -183,11 +183,14 @@ open _∧_ + o≤-refl : { i j : Ordinal } → i ≡ j → i o≤ j + o≤-refl {i} {j} eq = subst (λ k → i o< osuc k ) eq <-osuc OrdTrans : Transitive _o≤_ - OrdTrans (case1 refl) (case1 refl) = case1 refl - OrdTrans (case1 refl) (case2 lt2) = case2 lt2 - OrdTrans (case2 lt1) (case1 refl) = case2 lt1 - OrdTrans (case2 x) (case2 y) = case2 (ordtrans x y) + OrdTrans a≤b b≤c with osuc-≡< a≤b | osuc-≡< b≤c + OrdTrans a≤b b≤c | case1 refl | case1 refl = <-osuc + OrdTrans a≤b b≤c | case1 refl | case2 a≤c = ordtrans a≤c <-osuc + OrdTrans a≤b b≤c | case2 a≤c | case1 refl = ordtrans a≤c <-osuc + OrdTrans a≤b b≤c | case2 a<b | case2 b<c = ordtrans (ordtrans a<b b<c) <-osuc OrdPreorder : Preorder n n n OrdPreorder = record { Carrier = Ordinal @@ -195,7 +198,7 @@ ; _∼_ = _o≤_ ; isPreorder = record { isEquivalence = record { refl = refl ; sym = sym ; trans = trans } - ; reflexive = case1 + ; reflexive = o≤-refl ; trans = OrdTrans } }