Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 1186:ffe5bc98f9d1
not-covered
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 25 Feb 2023 23:39:34 +0900 |
parents | 807a55d55086 |
children | d996fe8dd116 |
files | src/OD.agda src/Topology.agda |
diffstat | 2 files changed, 33 insertions(+), 23 deletions(-) [+] |
line wrap: on
line diff
--- a/src/OD.agda Sat Feb 25 19:30:43 2023 +0900 +++ b/src/OD.agda Sat Feb 25 23:39:34 2023 +0900 @@ -401,7 +401,7 @@ power← A t t⊆A z xz = subst (λ k → odef A k ) &iso ( t⊆A (subst₂ (λ j k → odef j k) *iso (sym &iso) xz )) Intersection : (X : HOD ) → HOD -- ∩ X -Intersection X = record { od = record { def = λ x → (x o< & X ) ∧ ( {y : Ordinal} → odef X y → odef (* y) x )} ; odmax = & X ; <odmax = λ lt → proj1 lt } +Intersection X = record { od = record { def = λ x → (x o≤ & X ) ∧ ( {y : Ordinal} → odef X y → odef (* y) x )} ; odmax = osuc (& X) ; <odmax = λ lt → proj1 lt } -- {_} : ZFSet → ZFSet
--- a/src/Topology.agda Sat Feb 25 19:30:43 2023 +0900 +++ b/src/Topology.agda Sat Feb 25 23:39:34 2023 +0900 @@ -467,26 +467,32 @@ -- it means there is a limit has-intersection : {X : Ordinal} (CX : * X ⊆ CS top) (fip : {C x : Ordinal} → * C ⊆ * X → Subbase (* C) x → o∅ o< x) → o∅ o< X → ¬ ( Intersection (* X) =h= od∅ ) - has-intersection {X} CX fip 0<X i=0 = ⊥-elim ( ¬x<0 {NC.x fp13} ( eq→ i=0 ⟪ fp06 , fp05 ⟫ )) where + has-intersection {X} CX fip 0<X i=0 = ⊥-elim ( ¬x<0 {NC.x not-covered} ( eq→ i=0 ⟪ fp06 , fp05 ⟫ )) where + fp07 : HOD -- we have an element of X + fp07 = ODC.minimal O (* X) (0<P→ne (subst (λ k → o∅ o< k) (sym &iso) 0<X) ) + fp08 : odef (* X) (& fp07) + fp08 = ODC.x∋minimal O (* X) (0<P→ne (subst (λ k → o∅ o< k) (sym &iso) 0<X) ) no-cover : ¬ ( (* (OX CX)) covers L ) - no-cover cov = ⊥-elim ( o<¬≡ ? (fip ? ?) ) where + no-cover cov = ⊥-elim ( o<¬≡ ? (fip (λ x → x) (fp02 (Compact.isFinite compact (OOX CX) cov))) ) where fp01 : Ordinal fp01 = Compact.finCover compact (OOX CX) cov - fp02 : Subbase ? ? + int : HOD + int = Replace (* fp01) (λ x → L \ x) + fp02 : Finite-∪ (* (OX CX)) fp01 → Subbase (* X) (& (Intersection (Replace (* fp01) (λ x → L \ x)))) fp02 = ? - record NC : Set n where + fp03 : * (& (Replace (* fp01) (λ x → L \ x))) ⊆ * X + fp03 = ? + record NC : Set n where -- x is not covered field x : Ordinal - Lx : odef L x yx : {y : Ordinal} (Xy : odef (* X) y) → odef (* y) x - fp13 : NC - fp13 with ODC.p∨¬p O NC + not-covered : NC + not-covered with ODC.p∨¬p O NC ... | case1 nc = nc ... | case2 ¬nc = ⊥-elim ( no-cover record { cover = λ Lx → & (L \ coverf Lx) ; P∋cover = fp22 ; isCover = fp23 } ) where - fp14 : {x : Ordinal} → odef L x → ¬ ( {y : Ordinal} → odef (* X) y → odef (* y) x ) - fp14 {x} Lx yx = ¬nc record { x = x ; Lx = Lx ; yx = yx } coverSet : {x : Ordinal} → odef L x → HOD - coverSet {x} Lx = record { od = record { def = λ y → odef (* X) y ∧ odef (L \ * y) x } ; odmax = ? ; <odmax = ? } + coverSet {x} Lx = record { od = record { def = λ y → odef (* X) y ∧ odef (L \ * y) x } ; odmax = X + ; <odmax = λ {x} lt → subst (λ k → x o< k) &iso ( odef< (proj1 lt)) } fp17 : {x : Ordinal} → (Lx : odef L x ) → ¬ ( coverSet Lx =h= od∅ ) fp17 {x} Lx eq = ⊥-elim (¬nc record { x = x ; Lx = Lx ; yx = fp19 } ) where fp19 : {y : Ordinal} → odef (* X) y → odef (* y) x @@ -497,20 +503,24 @@ fp20 = ⟪ Xy , lyx ⟫ coverf : {x : Ordinal} → (Lx : odef L x ) → HOD coverf Lx = ODC.minimal O (coverSet Lx) (fp17 Lx) - fp22 : {x : Ordinal} (lt : odef L x) → odef (* (OX CX)) (& (coverf lt)) - fp22 {x} Lx = subst ( λ k → odef k (& (coverf Lx))) (sym *iso) ( record { z = & (coverf Lx) ; az = fp25 ; x=ψz = ? } ) where - fp24 : & (coverf Lx) ≡ & (L \ * ? ) - fp24 = ? + fp22 : {x : Ordinal} (lt : odef L x) → odef (* (OX CX)) (& (L \ coverf lt)) + fp22 {x} Lx = subst (λ k → odef k (& (L \ coverf Lx ))) (sym *iso) record { z = _ ; az = fp25 ; x=ψz = fp24 } where + fp24 : & (L \ coverf Lx) ≡ & (L \ * (& (coverf Lx))) + fp24 = cong (λ k → & ( L \ k )) (sym *iso) fp25 : odef (* X) (& (coverf Lx)) fp25 = proj1 ( ODC.x∋minimal O (coverSet Lx) (fp17 Lx) ) - -- with ( ODC.x∋minimal O (coverSet Lx) (fp17 Lx) ) - -- ... | t = ? - fp23 : {x : Ordinal} (lt : odef L x) → odef (* (& (coverf lt))) x - fp23 {x} Lx = ? - fp05 : {y : Ordinal } → (Xy : odef (* X) y ) → odef ( * y) (NC.x fp13 ) - fp05 {y} Xy = NC.yx fp13 Xy - fp06 : NC.x fp13 o< & (* X) - fp06 = ? + fp23 : {x : Ordinal} (lt : odef L x) → odef (* (& (L \ coverf lt))) x + fp23 {x} Lx = subst (λ k → odef k x) (sym *iso) ⟪ Lx , fp26 ⟫ where + fp26 : ¬ odef (coverf Lx) x + fp26 = subst (λ k → ¬ odef k x ) *iso (proj2 (proj2 ( ODC.x∋minimal O (coverSet Lx) (fp17 Lx) )) ) + fp05 : {y : Ordinal } → (Xy : odef (* X) y ) → odef ( * y) (NC.x not-covered ) + fp05 {y} Xy = NC.yx not-covered Xy + fp06 : NC.x not-covered o≤ & (* X) + fp06 = begin + NC.x not-covered ≡⟨ sym &iso ⟩ + & (* (NC.x not-covered)) <⟨ c<→o< (subst₂ (λ j k → odef j k ) *iso (sym &iso) (NC.yx not-covered fp08)) ⟩ + & fp07 <⟨ c<→o< fp08 ⟩ + & (* X) ∎ where open o≤-Reasoning O limit : {X : Ordinal} (CX : * X ⊆ CS top) (fip : {C x : Ordinal} → * C ⊆ * X → Subbase (* C) x → o∅ o< x) → Ordinal limit {X} CX fip with trio< X o∅