Mercurial > hg > Members > kono > Proof > automaton
comparison automaton-in-agda/src/turing.agda @ 183:3fa72793620b
fix
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 13 Jun 2021 20:45:17 +0900 |
parents | automaton-in-agda/src/agda/turing.agda@567754463810 |
children | 91781b7c65a8 |
comparison
equal
deleted
inserted
replaced
182:567754463810 | 183:3fa72793620b |
---|---|
1 {-# OPTIONS --allow-unsolved-metas #-} | |
2 module turing where | |
3 | |
4 open import Level renaming ( suc to succ ; zero to Zero ) | |
5 open import Data.Nat -- hiding ( erase ) | |
6 open import Data.List | |
7 open import Data.Maybe hiding ( map ) | |
8 open import Data.Bool using ( Bool ; true ; false ) renaming ( not to negate ) | |
9 open import Relation.Binary.PropositionalEquality hiding ( [_] ) | |
10 open import Relation.Nullary using (¬_; Dec; yes; no) | |
11 open import Level renaming ( suc to succ ; zero to Zero ) | |
12 open import Data.Product hiding ( map ) | |
13 | |
14 | |
15 data Write ( Σ : Set ) : Set where | |
16 write : Σ → Write Σ | |
17 wnone : Write Σ | |
18 -- erase write tnone | |
19 | |
20 data Move : Set where | |
21 left : Move | |
22 right : Move | |
23 mnone : Move | |
24 | |
25 -- at tδ both stack is poped | |
26 | |
27 -- write S push S , push SR | |
28 -- erase push SL , push tone | |
29 -- none push SL , push SR | |
30 -- left push SR , pop | |
31 -- right pop , push SL | |
32 | |
33 {-# TERMINATING #-} | |
34 move : {Q Σ : Set } → { tnone : Σ} → {tδ : Q → Σ → Q × ( Write Σ ) × Move } → (q : Q ) ( L : List Σ ) ( L : List Σ ) → ( Q × List Σ × List Σ ) | |
35 move {Q} {Σ} {tnone} {tδ} q L [] = move {Q} {Σ} {tnone} {tδ} q L ( tnone ∷ [] ) | |
36 move {Q} {Σ} {tnone} {tδ} q [] R = move {Q} {Σ} {tnone} {tδ} q ( tnone ∷ [] ) R | |
37 move {Q} {Σ} {tnone} {tδ} q ( LH ∷ LT ) ( RH ∷ RT ) with tδ q LH | |
38 ... | nq , write x , left = ( nq , ( RH ∷ x ∷ LT ) , RT ) | |
39 ... | nq , write x , right = ( nq , LT , ( x ∷ RH ∷ RT ) ) | |
40 ... | nq , write x , mnone = ( nq , ( x ∷ LT ) , ( RH ∷ RT ) ) | |
41 ... | nq , wnone , left = ( nq , ( RH ∷ LH ∷ LT ) , RT ) | |
42 ... | nq , wnone , right = ( nq , LT , ( LH ∷ RH ∷ RT ) ) | |
43 ... | nq , wnone , mnone = ( nq , ( LH ∷ LT ) , ( RH ∷ RT ) ) | |
44 {-# TERMINATING #-} | |
45 move-loop : {Q Σ : Set } → {tend : Q → Bool} → { tnone : Σ} → {tδ : Q → Σ → Q × ( Write Σ ) × Move } | |
46 → (q : Q ) ( L : List Σ ) ( L : List Σ ) → ( Q × List Σ × List Σ ) | |
47 move-loop {Q} {Σ} {tend} {tnone} {tδ} q L R with tend q | |
48 ... | true = ( q , L , R ) | |
49 ... | flase = move-loop {Q} {Σ} {tend} {tnone} {tδ} ( proj₁ next ) ( proj₁ ( proj₂ next ) ) ( proj₂ ( proj₂ next ) ) | |
50 where | |
51 next = move {Q} {Σ} {tnone} {tδ} q L R | |
52 | |
53 {-# TERMINATING #-} | |
54 move0 : {Q Σ : Set } ( tend : Q → Bool ) (tnone : Σ ) (tδ : Q → Σ → Q × ( Write Σ ) × Move) | |
55 (q : Q ) ( L : List Σ ) ( L : List Σ ) → ( Q × List Σ × List Σ ) | |
56 move0 tend tnone tδ q L R with tend q | |
57 ... | true = ( q , L , R ) | |
58 move0 tend tnone tδ q L [] | false = move0 tend tnone tδ q L ( tnone ∷ [] ) | |
59 move0 tend tnone tδ q [] R | false = move0 tend tnone tδ q ( tnone ∷ [] ) R | |
60 move0 tend tnone tδ q ( LH ∷ LT ) ( RH ∷ RT ) | false with tδ q LH | |
61 ... | nq , write x , left = move0 tend tnone tδ nq ( RH ∷ x ∷ LT ) RT | |
62 ... | nq , write x , right = move0 tend tnone tδ nq LT ( x ∷ RH ∷ RT ) | |
63 ... | nq , write x , mnone = move0 tend tnone tδ nq ( x ∷ LT ) ( RH ∷ RT ) | |
64 ... | nq , wnone , left = move0 tend tnone tδ nq ( RH ∷ LH ∷ LT ) RT | |
65 ... | nq , wnone , right = move0 tend tnone tδ nq LT ( LH ∷ RH ∷ RT ) | |
66 ... | nq , wnone , mnone = move0 tend tnone tδ nq ( LH ∷ LT ) ( RH ∷ RT ) | |
67 | |
68 record Turing ( Q : Set ) ( Σ : Set ) | |
69 : Set where | |
70 field | |
71 tδ : Q → Σ → Q × ( Write Σ ) × Move | |
72 tstart : Q | |
73 tend : Q → Bool | |
74 tnone : Σ | |
75 taccept : List Σ → ( Q × List Σ × List Σ ) | |
76 taccept L = move0 tend tnone tδ tstart L [] | |
77 | |
78 data CopyStates : Set where | |
79 s1 : CopyStates | |
80 s2 : CopyStates | |
81 s3 : CopyStates | |
82 s4 : CopyStates | |
83 s5 : CopyStates | |
84 H : CopyStates | |
85 | |
86 | |
87 Copyδ : CopyStates → ℕ → CopyStates × ( Write ℕ ) × Move | |
88 Copyδ s1 0 = H , wnone , mnone | |
89 Copyδ s1 1 = s2 , write 0 , right | |
90 Copyδ s2 0 = s3 , write 0 , right | |
91 Copyδ s2 1 = s2 , write 1 , right | |
92 Copyδ s3 0 = s4 , write 1 , left | |
93 Copyδ s3 1 = s3 , write 1 , right | |
94 Copyδ s4 0 = s5 , write 0 , left | |
95 Copyδ s4 1 = s4 , write 1 , left | |
96 Copyδ s5 0 = s1 , write 1 , right | |
97 Copyδ s5 1 = s5 , write 1 , left | |
98 Copyδ H _ = H , wnone , mnone | |
99 Copyδ _ (suc (suc _)) = H , wnone , mnone | |
100 | |
101 copyMachine : Turing CopyStates ℕ | |
102 copyMachine = record { | |
103 tδ = Copyδ | |
104 ; tstart = s1 | |
105 ; tend = tend | |
106 ; tnone = 0 | |
107 } where | |
108 tend : CopyStates → Bool | |
109 tend H = true | |
110 tend _ = false | |
111 | |
112 test1 : CopyStates × ( List ℕ ) × ( List ℕ ) | |
113 test1 = Turing.taccept copyMachine ( 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ [] ) | |
114 | |
115 test2 : ℕ → CopyStates × ( List ℕ ) × ( List ℕ ) | |
116 test2 n = loop n (Turing.tstart copyMachine) ( 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ [] ) [] | |
117 where | |
118 loop : ℕ → CopyStates → ( List ℕ ) → ( List ℕ ) → CopyStates × ( List ℕ ) × ( List ℕ ) | |
119 loop zero q L R = ( q , L , R ) | |
120 loop (suc n) q L R = loop n ( proj₁ t1 ) ( proj₁ ( proj₂ t1 ) ) ( proj₂ ( proj₂ t1 ) ) | |
121 where | |
122 t1 = move {CopyStates} {ℕ} {0} {Copyδ} q L R | |
123 | |
124 -- testn = map (\ n -> test2 n) ( 0 ∷ 1 ∷ 2 ∷ 3 ∷ 4 ∷ 5 ∷ 6 ∷ [] ) | |
125 | |
126 testn : ℕ → List ( CopyStates × ( List ℕ ) × ( List ℕ ) ) | |
127 testn 0 = test2 0 ∷ [] | |
128 testn (suc n) = test2 n ∷ testn n | |
129 |