Mercurial > hg > Members > kono > Proof > automaton
comparison automaton-in-agda/src/root2.agda @ 330:407684f806e4
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 16 Nov 2022 17:43:10 +0900 |
parents | 39f0e1d7a7e5 |
children | af8f630b7e60 |
comparison
equal
deleted
inserted
replaced
329:ba0ae5de62d1 | 330:407684f806e4 |
---|---|
44 divdable^2 (suc n) (suc k) 1<k 1<n pk dn2 with decD {suc k} {suc n} 1<k | 44 divdable^2 (suc n) (suc k) 1<k 1<n pk dn2 with decD {suc k} {suc n} 1<k |
45 ... | yes y = y | 45 ... | yes y = y |
46 ... | no non with gcd-euclid (suc k) (suc n) (suc n) 1<k (<-trans a<sa 1<n) (<-trans a<sa 1<n) (Prime.isPrime pk) dn2 | 46 ... | no non with gcd-euclid (suc k) (suc n) (suc n) 1<k (<-trans a<sa 1<n) (<-trans a<sa 1<n) (Prime.isPrime pk) dn2 |
47 ... | case1 dn = dn | 47 ... | case1 dn = dn |
48 ... | case2 dm = dm | 48 ... | case2 dm = dm |
49 | |
50 -- divdable-n*m : { n m k : ℕ } → 1 < k → 1 < n → Prime k → Dividable k ( n * m ) → Dividable k n ∨ Dividable k n | |
51 -- divdable-n*m = ? | |
52 | |
53 -- 2^2 : { n k : ℕ } → 1 < n → Dividable 2 ( n * n ) → Dividable 2 n | |
54 -- 2^2 = ? | |
49 | 55 |
50 -- p * n * n ≡ m * m means (m/n)^2 = p | 56 -- p * n * n ≡ m * m means (m/n)^2 = p |
51 -- rational m/n requires m and n is comprime each other which contradicts the condition | 57 -- rational m/n requires m and n is comprime each other which contradicts the condition |
52 | 58 |
53 root-prime-irrational : ( n m p : ℕ ) → n > 1 → Prime p → m > 1 → p * n * n ≡ m * m → ¬ (gcd n m ≡ 1) | 59 root-prime-irrational : ( n m p : ℕ ) → n > 1 → Prime p → m > 1 → p * n * n ≡ m * m → ¬ (gcd n m ≡ 1) |