comparison automaton-in-agda/src/finiteSetUtil.agda @ 405:af8f630b7e60

...
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Sun, 24 Sep 2023 18:02:04 +0900
parents dfaf230f7b9a
children a60132983557
comparison
equal deleted inserted replaced
404:dfaf230f7b9a 405:af8f630b7e60
25 open import Axiom.Extensionality.Propositional 25 open import Axiom.Extensionality.Propositional
26 open import Level hiding (suc ; zero) 26 open import Level hiding (suc ; zero)
27 27
28 module _ {Q : Set } (F : FiniteSet Q) where 28 module _ {Q : Set } (F : FiniteSet Q) where
29 open FiniteSet F 29 open FiniteSet F
30 equal?-refl : { x : Q } → equal? x x ≡ true 30 equal?-refl : { x : Q } → equal? x x ≡ true
31 equal?-refl {x} with F←Q x ≟ F←Q x 31 equal?-refl {x} with F←Q x ≟ F←Q x
32 ... | yes eq = refl 32 ... | yes eq = refl
33 ... | no ne = ⊥-elim (ne refl) 33 ... | no ne = ⊥-elim (ne refl)
34 equal→refl : { x y : Q } → equal? x y ≡ true → x ≡ y 34 equal→refl : { x y : Q } → equal? x y ≡ true → x ≡ y
35 equal→refl {q0} {q1} eq with F←Q q0 ≟ F←Q q1 35 equal→refl {q0} {q1} eq with F←Q q0 ≟ F←Q q1
45 eqP : (x y : Q) → Dec ( x ≡ y ) 45 eqP : (x y : Q) → Dec ( x ≡ y )
46 eqP x y with F←Q x ≟ F←Q y 46 eqP x y with F←Q x ≟ F←Q y
47 ... | yes eq = yes (subst₂ (λ j k → j ≡ k ) (finiso→ x) (finiso→ y) (cong Q←F eq) ) 47 ... | yes eq = yes (subst₂ (λ j k → j ≡ k ) (finiso→ x) (finiso→ y) (cong Q←F eq) )
48 ... | no n = no (λ eq → n (cong F←Q eq)) 48 ... | no n = no (λ eq → n (cong F←Q eq))
49 End : (m : ℕ ) → (p : Q → Bool ) → Set 49 End : (m : ℕ ) → (p : Q → Bool ) → Set
50 End m p = (i : Fin finite) → m ≤ toℕ i → p (Q←F i ) ≡ false 50 End m p = (i : Fin finite) → m ≤ toℕ i → p (Q←F i ) ≡ false
51 first-end : ( p : Q → Bool ) → End finite p 51 first-end : ( p : Q → Bool ) → End finite p
52 first-end p i i>n = ⊥-elim (nat-≤> i>n (fin<n {finite} i) ) 52 first-end p i i>n = ⊥-elim (nat-≤> i>n (fin<n {finite} i) )
53 next-end : {m : ℕ } → ( p : Q → Bool ) → End (suc m) p 53 next-end : {m : ℕ } → ( p : Q → Bool ) → End (suc m) p
54 → (m<n : m < finite ) → p (Q←F (fromℕ< m<n )) ≡ false 54 → (m<n : m < finite ) → p (Q←F (fromℕ< m<n )) ≡ false
55 → End m p 55 → End m p
56 next-end {m} p prev m<n np i m<i with NP.<-cmp m (toℕ i) 56 next-end {m} p prev m<n np i m<i with NP.<-cmp m (toℕ i)
57 next-end p prev m<n np i m<i | tri< a ¬b ¬c = prev i a 57 next-end p prev m<n np i m<i | tri< a ¬b ¬c = prev i a
58 next-end p prev m<n np i m<i | tri> ¬a ¬b c = ⊥-elim ( nat-≤> m<i c ) 58 next-end p prev m<n np i m<i | tri> ¬a ¬b c = ⊥-elim ( nat-≤> m<i c )
59 next-end {m} p prev m<n np i m<i | tri≈ ¬a b ¬c = subst ( λ k → p (Q←F k) ≡ false) (m<n=i i b m<n ) np where 59 next-end {m} p prev m<n np i m<i | tri≈ ¬a b ¬c = subst ( λ k → p (Q←F k) ≡ false) (m<n=i i b m<n ) np where
60 m<n=i : {n : ℕ } (i : Fin n) {m : ℕ } → m ≡ (toℕ i) → (m<n : m < n ) → fromℕ< m<n ≡ i 60 m<n=i : {n : ℕ } (i : Fin n) {m : ℕ } → m ≡ (toℕ i) → (m<n : m < n ) → fromℕ< m<n ≡ i
61 m<n=i i refl m<n = fromℕ<-toℕ i m<n 61 m<n=i i refl m<n = fromℕ<-toℕ i m<n
62 found : { p : Q → Bool } → (q : Q ) → p q ≡ true → exists p ≡ true 62 found : { p : Q → Bool } → (q : Q ) → p q ≡ true → exists p ≡ true
63 found {p} q pt = found1 finite (NP.≤-refl ) ( first-end p ) where 63 found {p} q pt = found1 finite (NP.≤-refl ) ( first-end p ) where
64 found1 : (m : ℕ ) (m<n : m Data.Nat.≤ finite ) → ((i : Fin finite) → m ≤ toℕ i → p (Q←F i ) ≡ false ) → exists1 m m<n p ≡ true 64 found1 : (m : ℕ ) (m<n : m Data.Nat.≤ finite ) → ((i : Fin finite) → m ≤ toℕ i → p (Q←F i ) ≡ false ) → exists1 m m<n p ≡ true
65 found1 0 m<n end = ⊥-elim ( ¬-bool (subst (λ k → k ≡ false ) (cong (λ k → p k) (finiso→ q) ) (end (F←Q q) z≤n )) pt ) 65 found1 0 m<n end = ⊥-elim ( ¬-bool (subst (λ k → k ≡ false ) (cong (λ k → p k) (finiso→ q) ) (end (F←Q q) z≤n )) pt )
66 found1 (suc m) m<n end with bool-≡-? (p (Q←F (fromℕ< m<n))) true 66 found1 (suc m) m<n end with bool-≡-? (p (Q←F (fromℕ< m<n))) true
67 found1 (suc m) m<n end | yes eq = subst (λ k → k \/ exists1 m (<to≤ m<n) p ≡ true ) (sym eq) (bool-or-4 {exists1 m (<to≤ m<n) p} ) 67 found1 (suc m) m<n end | yes eq = subst (λ k → k \/ exists1 m (<to≤ m<n) p ≡ true ) (sym eq) (bool-or-4 {exists1 m (<to≤ m<n) p} )
68 found1 (suc m) m<n end | no np = begin 68 found1 (suc m) m<n end | no np = begin
69 p (Q←F (fromℕ< m<n)) \/ exists1 m (<to≤ m<n) p 69 p (Q←F (fromℕ< m<n)) \/ exists1 m (<to≤ m<n) p
70 ≡⟨ bool-or-1 (¬-bool-t np ) ⟩ 70 ≡⟨ bool-or-1 (¬-bool-t np ) ⟩
71 exists1 m (<to≤ m<n) p 71 exists1 m (<to≤ m<n) p
72 ≡⟨ found1 m (<to≤ m<n) (next-end p end m<n (¬-bool-t np )) ⟩ 72 ≡⟨ found1 m (<to≤ m<n) (next-end p end m<n (¬-bool-t np )) ⟩
76 not-found {p} pn = not-found2 finite NP.≤-refl where 76 not-found {p} pn = not-found2 finite NP.≤-refl where
77 not-found2 : (m : ℕ ) → (m<n : m Data.Nat.≤ finite ) → exists1 m m<n p ≡ false 77 not-found2 : (m : ℕ ) → (m<n : m Data.Nat.≤ finite ) → exists1 m m<n p ≡ false
78 not-found2 zero _ = refl 78 not-found2 zero _ = refl
79 not-found2 ( suc m ) m<n with pn (Q←F (fromℕ< {m} {finite} m<n)) 79 not-found2 ( suc m ) m<n with pn (Q←F (fromℕ< {m} {finite} m<n))
80 not-found2 (suc m) m<n | eq = begin 80 not-found2 (suc m) m<n | eq = begin
81 p (Q←F (fromℕ< m<n)) \/ exists1 m (<to≤ m<n) p 81 p (Q←F (fromℕ< m<n)) \/ exists1 m (<to≤ m<n) p
82 ≡⟨ bool-or-1 eq ⟩ 82 ≡⟨ bool-or-1 eq ⟩
83 exists1 m (<to≤ m<n) p 83 exists1 m (<to≤ m<n) p
84 ≡⟨ not-found2 m (<to≤ m<n) ⟩ 84 ≡⟨ not-found2 m (<to≤ m<n) ⟩
85 false 85 false
86 ∎ where open ≡-Reasoning 86 ∎ where open ≡-Reasoning
87 found← : { p : Q → Bool } → exists p ≡ true → Found Q p 87 found← : { p : Q → Bool } → exists p ≡ true → Found Q p
88 found← {p} exst = found2 finite NP.≤-refl (first-end p ) where 88 found← {p} exst = found2 finite NP.≤-refl (first-end p ) where
90 found2 0 m<n end = ⊥-elim ( ¬-bool f01 exst ) where 90 found2 0 m<n end = ⊥-elim ( ¬-bool f01 exst ) where
91 f01 : exists p ≡ false 91 f01 : exists p ≡ false
92 f01 = not-found (λ q → subst ( λ k → p k ≡ false ) (finiso→ _) (end (F←Q q) z≤n )) 92 f01 = not-found (λ q → subst ( λ k → p k ≡ false ) (finiso→ _) (end (F←Q q) z≤n ))
93 found2 (suc m) m<n end with bool-≡-? (p (Q←F (fromℕ< m<n))) true 93 found2 (suc m) m<n end with bool-≡-? (p (Q←F (fromℕ< m<n))) true
94 found2 (suc m) m<n end | yes eq = record { found-q = Q←F (fromℕ< m<n) ; found-p = eq } 94 found2 (suc m) m<n end | yes eq = record { found-q = Q←F (fromℕ< m<n) ; found-p = eq }
95 found2 (suc m) m<n end | no np = 95 found2 (suc m) m<n end | no np =
96 found2 m (<to≤ m<n) (next-end p end m<n (¬-bool-t np )) 96 found2 m (<to≤ m<n) (next-end p end m<n (¬-bool-t np ))
97 not-found← : { p : Q → Bool } → exists p ≡ false → (q : Q ) → p q ≡ false 97 not-found← : { p : Q → Bool } → exists p ≡ false → (q : Q ) → p q ≡ false
98 not-found← {p} np q = ¬-bool-t ( contra-position {_} {_} {_} {exists p ≡ true} (found q) (λ ep → ¬-bool np ep ) ) 98 not-found← {p} np q = ¬-bool-t ( contra-position {_} {_} {_} {exists p ≡ true} (found q) (λ ep → ¬-bool np ep ) )
99 Q←F-inject : {x y : Fin finite} → Q←F x ≡ Q←F y → x ≡ y 99 Q←F-inject : {x y : Fin finite} → Q←F x ≡ Q←F y → x ≡ y
100 Q←F-inject eq = subst₂ (λ j k → j ≡ k ) (finiso← _) (finiso← _) (cong F←Q eq) 100 Q←F-inject eq = subst₂ (λ j k → j ≡ k ) (finiso← _) (finiso← _) (cong F←Q eq)
101 F←Q-inject : {x y : Q } → F←Q x ≡ F←Q y → x ≡ y 101 F←Q-inject : {x y : Q } → F←Q x ≡ F←Q y → x ≡ y
102 F←Q-inject eq = subst₂ (λ j k → j ≡ k ) (finiso→ _) (finiso→ _) (cong Q←F eq) 102 F←Q-inject eq = subst₂ (λ j k → j ≡ k ) (finiso→ _) (finiso→ _) (cong Q←F eq)
103 103
104 104
105 105
106 iso-fin : {A B : Set} → FiniteSet A → Bijection A B → FiniteSet B 106 iso-fin : {A B : Set} → FiniteSet A → Bijection A B → FiniteSet B
107 iso-fin {A} {B} fin iso = record { 107 iso-fin {A} {B} fin iso = record {
108 Q←F = λ f → fun→ iso ( FiniteSet.Q←F fin f ) 108 Q←F = λ f → fun→ iso ( FiniteSet.Q←F fin f )
109 ; F←Q = λ b → FiniteSet.F←Q fin (fun← iso b ) 109 ; F←Q = λ b → FiniteSet.F←Q fin (fun← iso b )
110 ; finiso→ = finiso→ 110 ; finiso→ = finiso→
111 ; finiso← = finiso← 111 ; finiso← = finiso←
112 } where 112 } where
113 finiso→ : (q : B) → fun→ iso (FiniteSet.Q←F fin (FiniteSet.F←Q fin (Bijection.fun← iso q))) ≡ q 113 finiso→ : (q : B) → fun→ iso (FiniteSet.Q←F fin (FiniteSet.F←Q fin (Bijection.fun← iso q))) ≡ q
114 finiso→ q = begin 114 finiso→ q = begin
115 fun→ iso (FiniteSet.Q←F fin (FiniteSet.F←Q fin (Bijection.fun← iso q))) 115 fun→ iso (FiniteSet.Q←F fin (FiniteSet.F←Q fin (Bijection.fun← iso q)))
116 ≡⟨ cong (λ k → fun→ iso k ) (FiniteSet.finiso→ fin _ ) ⟩ 116 ≡⟨ cong (λ k → fun→ iso k ) (FiniteSet.finiso→ fin _ ) ⟩
117 fun→ iso (Bijection.fun← iso q) 117 fun→ iso (Bijection.fun← iso q)
118 ≡⟨ fiso→ iso _ ⟩ 118 ≡⟨ fiso→ iso _ ⟩
119 q 119 q
120 ∎ where open ≡-Reasoning 120 ∎ where open ≡-Reasoning
121 finiso← : (f : Fin (FiniteSet.finite fin ))→ FiniteSet.F←Q fin (Bijection.fun← iso (Bijection.fun→ iso (FiniteSet.Q←F fin f))) ≡ f 121 finiso← : (f : Fin (FiniteSet.finite fin ))→ FiniteSet.F←Q fin (Bijection.fun← iso (Bijection.fun→ iso (FiniteSet.Q←F fin f))) ≡ f
122 finiso← f = begin 122 finiso← f = begin
123 FiniteSet.F←Q fin (Bijection.fun← iso (Bijection.fun→ iso (FiniteSet.Q←F fin f))) 123 FiniteSet.F←Q fin (Bijection.fun← iso (Bijection.fun→ iso (FiniteSet.Q←F fin f)))
124 ≡⟨ cong (λ k → FiniteSet.F←Q fin k ) (Bijection.fiso← iso _) ⟩ 124 ≡⟨ cong (λ k → FiniteSet.F←Q fin k ) (Bijection.fiso← iso _) ⟩
125 FiniteSet.F←Q fin (FiniteSet.Q←F fin f) 125 FiniteSet.F←Q fin (FiniteSet.Q←F fin f)
126 ≡⟨ FiniteSet.finiso← fin _ ⟩ 126 ≡⟨ FiniteSet.finiso← fin _ ⟩
127 f 127 f
128 ∎ where 128 ∎ where
129 open ≡-Reasoning 129 open ≡-Reasoning
130 130
134 finOne : FiniteSet One 134 finOne : FiniteSet One
135 finOne = record { finite = 1 ; Q←F = λ _ → one ; F←Q = λ _ → # 0 ; finiso→ = fin00 ; finiso← = fin1≡0 } where 135 finOne = record { finite = 1 ; Q←F = λ _ → one ; F←Q = λ _ → # 0 ; finiso→ = fin00 ; finiso← = fin1≡0 } where
136 fin00 : (q : One) → one ≡ q 136 fin00 : (q : One) → one ≡ q
137 fin00 one = refl 137 fin00 one = refl
138 138
139 fin-∨1 : {B : Set} → (fb : FiniteSet B ) → FiniteSet (One ∨ B) 139 fin-∨1 : {B : Set} → (fb : FiniteSet B ) → FiniteSet (One ∨ B)
140 fin-∨1 {B} fb = record { 140 fin-∨1 {B} fb = record {
141 Q←F = Q←F 141 Q←F = Q←F
142 ; F←Q = F←Q 142 ; F←Q = F←Q
143 ; finiso→ = finiso→ 143 ; finiso→ = finiso→
144 ; finiso← = finiso← 144 ; finiso← = finiso←
147 Q←F : Fin (suc b) → One ∨ B 147 Q←F : Fin (suc b) → One ∨ B
148 Q←F zero = case1 one 148 Q←F zero = case1 one
149 Q←F (suc f) = case2 (FiniteSet.Q←F fb f) 149 Q←F (suc f) = case2 (FiniteSet.Q←F fb f)
150 F←Q : One ∨ B → Fin (suc b) 150 F←Q : One ∨ B → Fin (suc b)
151 F←Q (case1 one) = zero 151 F←Q (case1 one) = zero
152 F←Q (case2 f ) = suc (FiniteSet.F←Q fb f) 152 F←Q (case2 f ) = suc (FiniteSet.F←Q fb f)
153 finiso→ : (q : One ∨ B) → Q←F (F←Q q) ≡ q 153 finiso→ : (q : One ∨ B) → Q←F (F←Q q) ≡ q
154 finiso→ (case1 one) = refl 154 finiso→ (case1 one) = refl
155 finiso→ (case2 b) = cong (λ k → case2 k ) (FiniteSet.finiso→ fb b) 155 finiso→ (case2 b) = cong (λ k → case2 k ) (FiniteSet.finiso→ fb b)
156 finiso← : (q : Fin (suc b)) → F←Q (Q←F q) ≡ q 156 finiso← : (q : Fin (suc b)) → F←Q (Q←F q) ≡ q
157 finiso← zero = refl 157 finiso← zero = refl
158 finiso← (suc f) = cong ( λ k → suc k ) (FiniteSet.finiso← fb f) 158 finiso← (suc f) = cong ( λ k → suc k ) (FiniteSet.finiso← fb f)
159 159
160 160
161 fin-∨2 : {B : Set} → ( a : ℕ ) → FiniteSet B → FiniteSet (Fin a ∨ B) 161 fin-∨2 : {B : Set} → ( a : ℕ ) → FiniteSet B → FiniteSet (Fin a ∨ B)
162 fin-∨2 {B} zero fb = iso-fin fb iso where 162 fin-∨2 {B} zero fb = iso-fin fb iso where
163 iso : Bijection B (Fin zero ∨ B) 163 iso : Bijection B (Fin zero ∨ B)
164 iso = record { 164 iso = record {
165 fun← = fun←1 165 fun← = fun←1
166 ; fun→ = λ b → case2 b 166 ; fun→ = λ b → case2 b
167 ; fiso→ = fiso→1 167 ; fiso→ = fiso→1
168 ; fiso← = λ _ → refl 168 ; fiso← = λ _ → refl
169 } where 169 } where
170 fun←1 : Fin zero ∨ B → B 170 fun←1 : Fin zero ∨ B → B
171 fun←1 (case2 x) = x 171 fun←1 (case2 x) = x
172 fiso→1 : (f : Fin zero ∨ B ) → case2 (fun←1 f) ≡ f 172 fiso→1 : (f : Fin zero ∨ B ) → case2 (fun←1 f) ≡ f
173 fiso→1 (case2 x) = refl 173 fiso→1 (case2 x) = refl
174 fin-∨2 {B} (suc a) fb = iso-fin (fin-∨1 (fin-∨2 a fb) ) iso 174 fin-∨2 {B} (suc a) fb = iso-fin (fin-∨1 (fin-∨2 a fb) ) iso
175 where 175 where
176 iso : Bijection (One ∨ (Fin a ∨ B) ) (Fin (suc a) ∨ B) 176 iso : Bijection (One ∨ (Fin a ∨ B) ) (Fin (suc a) ∨ B)
191 FiniteSet→Fin : {A : Set} → (fin : FiniteSet A ) → Bijection (Fin (FiniteSet.finite fin)) A 191 FiniteSet→Fin : {A : Set} → (fin : FiniteSet A ) → Bijection (Fin (FiniteSet.finite fin)) A
192 fun← (FiniteSet→Fin fin) f = FiniteSet.F←Q fin f 192 fun← (FiniteSet→Fin fin) f = FiniteSet.F←Q fin f
193 fun→ (FiniteSet→Fin fin) f = FiniteSet.Q←F fin f 193 fun→ (FiniteSet→Fin fin) f = FiniteSet.Q←F fin f
194 fiso← (FiniteSet→Fin fin) = FiniteSet.finiso← fin 194 fiso← (FiniteSet→Fin fin) = FiniteSet.finiso← fin
195 fiso→ (FiniteSet→Fin fin) = FiniteSet.finiso→ fin 195 fiso→ (FiniteSet→Fin fin) = FiniteSet.finiso→ fin
196 196
197 197
198 fin-∨ : {A B : Set} → FiniteSet A → FiniteSet B → FiniteSet (A ∨ B) 198 fin-∨ : {A B : Set} → FiniteSet A → FiniteSet B → FiniteSet (A ∨ B)
199 fin-∨ {A} {B} fa fb = iso-fin (fin-∨2 a fb ) iso2 where 199 fin-∨ {A} {B} fa fb = iso-fin (fin-∨2 a fb ) iso2 where
200 a = FiniteSet.finite fa 200 a = FiniteSet.finite fa
201 ia = FiniteSet→Fin fa 201 ia = FiniteSet→Fin fa
202 iso2 : Bijection (Fin a ∨ B ) (A ∨ B) 202 iso2 : Bijection (Fin a ∨ B ) (A ∨ B)
203 fun← iso2 (case1 x) = case1 (fun← ia x ) 203 fun← iso2 (case1 x) = case1 (fun← ia x )
209 fiso→ iso2 (case1 x) = cong ( λ k → case1 k ) (Bijection.fiso→ ia x) 209 fiso→ iso2 (case1 x) = cong ( λ k → case1 k ) (Bijection.fiso→ ia x)
210 fiso→ iso2 (case2 x) = refl 210 fiso→ iso2 (case2 x) = refl
211 211
212 open import Data.Product hiding ( map ) 212 open import Data.Product hiding ( map )
213 213
214 fin-× : {A B : Set} → FiniteSet A → FiniteSet B → FiniteSet (A × B) 214 fin-× : {A B : Set} → FiniteSet A → FiniteSet B → FiniteSet (A × B)
215 fin-× {A} {B} fa fb with FiniteSet→Fin fa 215 fin-× {A} {B} fa fb with FiniteSet→Fin fa
216 ... | a=f = iso-fin (fin-×-f a ) iso-1 where 216 ... | a=f = iso-fin (fin-×-f a ) iso-1 where
217 a = FiniteSet.finite fa 217 a = FiniteSet.finite fa
218 b = FiniteSet.finite fb 218 b = FiniteSet.finite fb
219 iso-1 : Bijection (Fin a × B) ( A × B ) 219 iso-1 : Bijection (Fin a × B) ( A × B )
220 fun← iso-1 x = ( FiniteSet.F←Q fa (proj₁ x) , proj₂ x) 220 fun← iso-1 x = ( FiniteSet.F←Q fa (proj₁ x) , proj₂ x)
221 fun→ iso-1 x = ( FiniteSet.Q←F fa (proj₁ x) , proj₂ x) 221 fun→ iso-1 x = ( FiniteSet.Q←F fa (proj₁ x) , proj₂ x)
222 fiso← iso-1 x = lemma where 222 fiso← iso-1 x = lemma where
223 lemma : (FiniteSet.F←Q fa (FiniteSet.Q←F fa (proj₁ x)) , proj₂ x) ≡ ( proj₁ x , proj₂ x ) 223 lemma : (FiniteSet.F←Q fa (FiniteSet.Q←F fa (proj₁ x)) , proj₂ x) ≡ ( proj₁ x , proj₂ x )
224 lemma = cong ( λ k → ( k , proj₂ x ) ) (FiniteSet.finiso← fa _ ) 224 lemma = cong ( λ k → ( k , proj₂ x ) ) (FiniteSet.finiso← fa _ )
225 fiso→ iso-1 x = cong ( λ k → ( k , proj₂ x ) ) (FiniteSet.finiso→ fa _ ) 225 fiso→ iso-1 x = cong ( λ k → ( k , proj₂ x ) ) (FiniteSet.finiso→ fa _ )
226 226
232 fiso← iso-2 (case1 x) = refl 232 fiso← iso-2 (case1 x) = refl
233 fiso← iso-2 (case2 x) = refl 233 fiso← iso-2 (case2 x) = refl
234 fiso→ iso-2 (zero , b ) = refl 234 fiso→ iso-2 (zero , b ) = refl
235 fiso→ iso-2 (suc a , b ) = refl 235 fiso→ iso-2 (suc a , b ) = refl
236 236
237 fin-×-f : ( a : ℕ ) → FiniteSet ((Fin a) × B) 237 fin-×-f : ( a : ℕ ) → FiniteSet ((Fin a) × B)
238 fin-×-f zero = record { Q←F = λ () ; F←Q = λ () ; finiso→ = λ () ; finiso← = λ () ; finite = 0 } 238 fin-×-f zero = record { Q←F = λ () ; F←Q = λ () ; finiso→ = λ () ; finiso← = λ () ; finite = 0 }
239 fin-×-f (suc a) = iso-fin ( fin-∨ fb ( fin-×-f a ) ) iso-2 239 fin-×-f (suc a) = iso-fin ( fin-∨ fb ( fin-×-f a ) ) iso-2
240 240
241 open _∧_ 241 open _∧_
242 242
243 fin-∧ : {A B : Set} → FiniteSet A → FiniteSet B → FiniteSet (A ∧ B) 243 fin-∧ : {A B : Set} → FiniteSet A → FiniteSet B → FiniteSet (A ∧ B)
244 fin-∧ {A} {B} fa fb with FiniteSet→Fin fa -- same thing for our tool 244 fin-∧ {A} {B} fa fb with FiniteSet→Fin fa -- same thing for our tool
245 ... | a=f = iso-fin (fin-×-f a ) iso-1 where 245 ... | a=f = iso-fin (fin-×-f a ) iso-1 where
246 a = FiniteSet.finite fa 246 a = FiniteSet.finite fa
247 b = FiniteSet.finite fb 247 b = FiniteSet.finite fb
248 iso-1 : Bijection (Fin a ∧ B) ( A ∧ B ) 248 iso-1 : Bijection (Fin a ∧ B) ( A ∧ B )
249 fun← iso-1 x = record { proj1 = FiniteSet.F←Q fa (proj1 x) ; proj2 = proj2 x} 249 fun← iso-1 x = record { proj1 = FiniteSet.F←Q fa (proj1 x) ; proj2 = proj2 x}
250 fun→ iso-1 x = record { proj1 = FiniteSet.Q←F fa (proj1 x) ; proj2 = proj2 x} 250 fun→ iso-1 x = record { proj1 = FiniteSet.Q←F fa (proj1 x) ; proj2 = proj2 x}
251 fiso← iso-1 x = lemma where 251 fiso← iso-1 x = lemma where
252 lemma : record { proj1 = FiniteSet.F←Q fa (FiniteSet.Q←F fa (proj1 x)) ; proj2 = proj2 x} ≡ record {proj1 = proj1 x ; proj2 = proj2 x } 252 lemma : record { proj1 = FiniteSet.F←Q fa (FiniteSet.Q←F fa (proj1 x)) ; proj2 = proj2 x} ≡ record {proj1 = proj1 x ; proj2 = proj2 x }
253 lemma = cong ( λ k → record {proj1 = k ; proj2 = proj2 x } ) (FiniteSet.finiso← fa _ ) 253 lemma = cong ( λ k → record {proj1 = k ; proj2 = proj2 x } ) (FiniteSet.finiso← fa _ )
254 fiso→ iso-1 x = cong ( λ k → record {proj1 = k ; proj2 = proj2 x } ) (FiniteSet.finiso→ fa _ ) 254 fiso→ iso-1 x = cong ( λ k → record {proj1 = k ; proj2 = proj2 x } ) (FiniteSet.finiso→ fa _ )
261 fiso← iso-2 (case1 x) = refl 261 fiso← iso-2 (case1 x) = refl
262 fiso← iso-2 (case2 x) = refl 262 fiso← iso-2 (case2 x) = refl
263 fiso→ iso-2 (record { proj1 = zero ; proj2 = b }) = refl 263 fiso→ iso-2 (record { proj1 = zero ; proj2 = b }) = refl
264 fiso→ iso-2 (record { proj1 = suc a ; proj2 = b }) = refl 264 fiso→ iso-2 (record { proj1 = suc a ; proj2 = b }) = refl
265 265
266 fin-×-f : ( a : ℕ ) → FiniteSet ((Fin a) ∧ B) 266 fin-×-f : ( a : ℕ ) → FiniteSet ((Fin a) ∧ B)
267 fin-×-f zero = record { Q←F = λ () ; F←Q = λ () ; finiso→ = λ () ; finiso← = λ () ; finite = 0 } 267 fin-×-f zero = record { Q←F = λ () ; F←Q = λ () ; finiso→ = λ () ; finiso← = λ () ; finite = 0 }
268 fin-×-f (suc a) = iso-fin ( fin-∨ fb ( fin-×-f a ) ) iso-2 268 fin-×-f (suc a) = iso-fin ( fin-∨ fb ( fin-×-f a ) ) iso-2
269 269
270 -- import Data.Nat.DivMod 270 -- import Data.Nat.DivMod
271 271
290 cast-iso : {n m : ℕ } → (eq : n ≡ m ) → (f : Fin m ) → Data.Fin.cast eq ( Data.Fin.cast (sym eq ) f) ≡ f 290 cast-iso : {n m : ℕ } → (eq : n ≡ m ) → (f : Fin m ) → Data.Fin.cast eq ( Data.Fin.cast (sym eq ) f) ≡ f
291 cast-iso refl zero = refl 291 cast-iso refl zero = refl
292 cast-iso refl (suc f) = cong ( λ k → suc k ) ( cast-iso refl f ) 292 cast-iso refl (suc f) = cong ( λ k → suc k ) ( cast-iso refl f )
293 293
294 294
295 fin2List : {n : ℕ } → FiniteSet (Vec Bool n) 295 fin2List : {n : ℕ } → FiniteSet (Vec Bool n)
296 fin2List {zero} = record { 296 fin2List {zero} = record {
297 Q←F = λ _ → Vec.[] 297 Q←F = λ _ → Vec.[]
298 ; F←Q = λ _ → # 0 298 ; F←Q = λ _ → # 0
299 ; finiso→ = finiso→ 299 ; finiso→ = finiso→
300 ; finiso← = finiso← 300 ; finiso← = finiso←
301 } where 301 } where
302 Q = Vec Bool zero 302 Q = Vec Bool zero
303 finiso→ : (q : Q) → [] ≡ q 303 finiso→ : (q : Q) → [] ≡ q
304 finiso→ [] = refl 304 finiso→ [] = refl
305 finiso← : (f : Fin (exp 2 zero)) → # 0 ≡ f 305 finiso← : (f : Fin (exp 2 zero)) → # 0 ≡ f
307 fin2List {suc n} = subst (λ k → FiniteSet (Vec Bool (suc n)) ) (sym (exp2 n)) ( iso-fin (fin-∨ (fin2List ) (fin2List )) iso ) 307 fin2List {suc n} = subst (λ k → FiniteSet (Vec Bool (suc n)) ) (sym (exp2 n)) ( iso-fin (fin-∨ (fin2List ) (fin2List )) iso )
308 where 308 where
309 QtoR : Vec Bool (suc n) → Vec Bool n ∨ Vec Bool n 309 QtoR : Vec Bool (suc n) → Vec Bool n ∨ Vec Bool n
310 QtoR ( true ∷ x ) = case1 x 310 QtoR ( true ∷ x ) = case1 x
311 QtoR ( false ∷ x ) = case2 x 311 QtoR ( false ∷ x ) = case2 x
312 RtoQ : Vec Bool n ∨ Vec Bool n → Vec Bool (suc n) 312 RtoQ : Vec Bool n ∨ Vec Bool n → Vec Bool (suc n)
313 RtoQ ( case1 x ) = true ∷ x 313 RtoQ ( case1 x ) = true ∷ x
314 RtoQ ( case2 x ) = false ∷ x 314 RtoQ ( case2 x ) = false ∷ x
315 isoRQ : (x : Vec Bool (suc n) ) → RtoQ ( QtoR x ) ≡ x 315 isoRQ : (x : Vec Bool (suc n) ) → RtoQ ( QtoR x ) ≡ x
316 isoRQ (true ∷ _ ) = refl 316 isoRQ (true ∷ _ ) = refl
317 isoRQ (false ∷ _ ) = refl 317 isoRQ (false ∷ _ ) = refl
327 lemma6 : toℕ (FiniteSet.F←Q fin (FiniteSet.Q←F fin (fromℕ< n<m))) < suc n 327 lemma6 : toℕ (FiniteSet.F←Q fin (FiniteSet.Q←F fin (fromℕ< n<m))) < suc n
328 lemma6 = subst (λ k → toℕ k < suc n ) (sym (FiniteSet.finiso← fin _ )) (subst (λ k → k < suc n) (sym (toℕ-fromℕ< n<m )) a<sa ) 328 lemma6 = subst (λ k → toℕ k < suc n ) (sym (FiniteSet.finiso← fin _ )) (subst (λ k → k < suc n) (sym (toℕ-fromℕ< n<m )) a<sa )
329 qb1 : (q : Q) → toℕ (FiniteSet.F←Q fin q) < n → Bool 329 qb1 : (q : Q) → toℕ (FiniteSet.F←Q fin q) < n → Bool
330 qb1 q q<n = Q→B q (NP.<-trans q<n a<sa) 330 qb1 q q<n = Q→B q (NP.<-trans q<n a<sa)
331 331
332 List2Func : { Q : Set } → {n : ℕ } → (fin : FiniteSet Q ) → n < suc (FiniteSet.finite fin) → Vec Bool n → Q → Bool 332 List2Func : { Q : Set } → {n : ℕ } → (fin : FiniteSet Q ) → n < suc (FiniteSet.finite fin) → Vec Bool n → Q → Bool
333 List2Func {Q} {zero} fin (s≤s z≤n) [] q = false 333 List2Func {Q} {zero} fin (s≤s z≤n) [] q = false
334 List2Func {Q} {suc n} fin (s≤s n<m) (h ∷ t) q with FiniteSet.F←Q fin q ≟ fromℕ< n<m 334 List2Func {Q} {suc n} fin (s≤s n<m) (h ∷ t) q with FiniteSet.F←Q fin q ≟ fromℕ< n<m
335 ... | yes _ = h 335 ... | yes _ = h
336 ... | no _ = List2Func {Q} fin (NP.<-trans n<m a<sa ) t q 336 ... | no _ = List2Func {Q} fin (NP.<-trans n<m a<sa ) t q
337 337
338 open import Level renaming ( suc to Suc ; zero to Zero) 338 open import Level renaming ( suc to Suc ; zero to Zero)
339 339
340 340
341 L2F : {Q : Set } {n : ℕ } → (fin : FiniteSet Q ) → n < suc (FiniteSet.finite fin) → Vec Bool n → (q : Q ) → toℕ (FiniteSet.F←Q fin q ) < n → Bool 341 L2F : {Q : Set } {n : ℕ } → (fin : FiniteSet Q ) → n < suc (FiniteSet.finite fin) → Vec Bool n → (q : Q ) → toℕ (FiniteSet.F←Q fin q ) < n → Bool
342 L2F fin n<m x q q<n = List2Func fin n<m x q 342 L2F fin n<m x q q<n = List2Func fin n<m x q
343 343
344 L2F-iso : { Q : Set } → (fin : FiniteSet Q ) → (f : Q → Bool ) → (q : Q ) → (L2F fin a<sa (F2L fin a<sa (λ q _ → f q) )) q (toℕ<n _) ≡ f q 344 L2F-iso : { Q : Set } → (fin : FiniteSet Q ) → (f : Q → Bool ) → (q : Q ) → (L2F fin a<sa (F2L fin a<sa (λ q _ → f q) )) q (toℕ<n _) ≡ f q
345 L2F-iso {Q} fin f q = l2f m a<sa (toℕ<n _) where 345 L2F-iso {Q} fin f q = l2f m a<sa (toℕ<n _) where
346 m = FiniteSet.finite fin 346 m = FiniteSet.finite fin
347 lemma11f : {n : ℕ } → (n<m : n < m ) → ¬ ( FiniteSet.F←Q fin q ≡ fromℕ< n<m ) → toℕ (FiniteSet.F←Q fin q) ≤ n → toℕ (FiniteSet.F←Q fin q) < n 347 lemma11f : {n : ℕ } → (n<m : n < m ) → ¬ ( FiniteSet.F←Q fin q ≡ fromℕ< n<m ) → toℕ (FiniteSet.F←Q fin q) ≤ n → toℕ (FiniteSet.F←Q fin q) < n
350 lemma13 {0} {0} (s≤s z≤n) nt z≤n = ⊥-elim ( nt refl ) 350 lemma13 {0} {0} (s≤s z≤n) nt z≤n = ⊥-elim ( nt refl )
351 lemma13 {suc _} {0} (s≤s (s≤s n<m)) nt z≤n = s≤s z≤n 351 lemma13 {suc _} {0} (s≤s (s≤s n<m)) nt z≤n = s≤s z≤n
352 lemma13 {suc n} {suc nq} n<m nt (s≤s nq≤n) = s≤s (lemma13 {n} {nq} (NP.<-trans a<sa n<m ) (λ eq → nt ( cong ( λ k → suc k ) eq )) nq≤n) 352 lemma13 {suc n} {suc nq} n<m nt (s≤s nq≤n) = s≤s (lemma13 {n} {nq} (NP.<-trans a<sa n<m ) (λ eq → nt ( cong ( λ k → suc k ) eq )) nq≤n)
353 lemma3f : {a b : ℕ } → (lt : a < b ) → fromℕ< (s≤s lt) ≡ suc (fromℕ< lt) 353 lemma3f : {a b : ℕ } → (lt : a < b ) → fromℕ< (s≤s lt) ≡ suc (fromℕ< lt)
354 lemma3f (s≤s lt) = refl 354 lemma3f (s≤s lt) = refl
355 lemma12f : {n m : ℕ } → (n<m : n < m ) → (f : Fin m ) → toℕ f ≡ n → f ≡ fromℕ< n<m 355 lemma12f : {n m : ℕ } → (n<m : n < m ) → (f : Fin m ) → toℕ f ≡ n → f ≡ fromℕ< n<m
356 lemma12f {zero} {suc m} (s≤s z≤n) zero refl = refl 356 lemma12f {zero} {suc m} (s≤s z≤n) zero refl = refl
357 lemma12f {suc n} {suc m} (s≤s n<m) (suc f) refl = subst ( λ k → suc f ≡ k ) (sym (lemma3f n<m) ) ( cong ( λ k → suc k ) ( lemma12f {n} {m} n<m f refl ) ) 357 lemma12f {suc n} {suc m} (s≤s n<m) (suc f) refl = subst ( λ k → suc f ≡ k ) (sym (lemma3f n<m) ) ( cong ( λ k → suc k ) ( lemma12f {n} {m} n<m f refl ) )
358 l2f : (n : ℕ ) → (n<m : n < suc m ) → (q<n : toℕ (FiniteSet.F←Q fin q ) < n ) → (L2F fin n<m (F2L fin n<m (λ q _ → f q))) q q<n ≡ f q 358 l2f : (n : ℕ ) → (n<m : n < suc m ) → (q<n : toℕ (FiniteSet.F←Q fin q ) < n ) → (L2F fin n<m (F2L fin n<m (λ q _ → f q))) q q<n ≡ f q
359 l2f zero (s≤s z≤n) () 359 l2f zero (s≤s z≤n) ()
360 l2f (suc n) (s≤s n<m) (s≤s n<q) with FiniteSet.F←Q fin q ≟ fromℕ< n<m 360 l2f (suc n) (s≤s n<m) (s≤s n<q) with FiniteSet.F←Q fin q ≟ fromℕ< n<m
361 l2f (suc n) (s≤s n<m) (s≤s n<q) | yes p = begin 361 l2f (suc n) (s≤s n<m) (s≤s n<q) | yes p = begin
362 f (FiniteSet.Q←F fin (fromℕ< n<m)) 362 f (FiniteSet.Q←F fin (fromℕ< n<m))
363 ≡⟨ cong ( λ k → f (FiniteSet.Q←F fin k )) (sym p) ⟩ 363 ≡⟨ cong ( λ k → f (FiniteSet.Q←F fin k )) (sym p) ⟩
364 f (FiniteSet.Q←F fin ( FiniteSet.F←Q fin q )) 364 f (FiniteSet.Q←F fin ( FiniteSet.F←Q fin q ))
365 ≡⟨ cong ( λ k → f k ) (FiniteSet.finiso→ fin _ ) ⟩ 365 ≡⟨ cong ( λ k → f k ) (FiniteSet.finiso→ fin _ ) ⟩
366 f q 366 f q
367 ∎ where 367 ∎ where
368 open ≡-Reasoning 368 open ≡-Reasoning
369 l2f (suc n) (s≤s n<m) (s≤s n<q) | no ¬p = l2f n (NP.<-trans n<m a<sa) (lemma11f n<m ¬p n<q) 369 l2f (suc n) (s≤s n<m) (s≤s n<q) | no ¬p = l2f n (NP.<-trans n<m a<sa) (lemma11f n<m ¬p n<q)
370 370
371 Fin2Finite : ( n : ℕ ) → FiniteSet (Fin n) 371 Fin2Finite : ( n : ℕ ) → FiniteSet (Fin n)
372 Fin2Finite n = record { F←Q = λ x → x ; Q←F = λ x → x ; finiso← = λ q → refl ; finiso→ = λ q → refl } 372 Fin2Finite n = record { F←Q = λ x → x ; Q←F = λ x → x ; finiso← = λ q → refl ; finiso→ = λ q → refl }
373
374 data fin-less { n : ℕ } { A : Set } (fa : FiniteSet A ) (n<m : n < FiniteSet.finite fa ) : Set where
375 elm1 : (elm : A ) → toℕ (FiniteSet.F←Q fa elm ) < n → fin-less fa n<m
376
377 get-elm : { n : ℕ } { A : Set } {fa : FiniteSet A } {n<m : n < FiniteSet.finite fa } → fin-less fa n<m → A
378 get-elm (elm1 a _ ) = a
379
380 get-< : { n : ℕ } { A : Set } {fa : FiniteSet A } {n<m : n < FiniteSet.finite fa }→ (f : fin-less fa n<m ) → toℕ (FiniteSet.F←Q fa (get-elm f )) < n
381 get-< (elm1 _ b ) = b
382
383 fin-< : {A : Set} → { n : ℕ } → (fa : FiniteSet A ) → (n<m : n < FiniteSet.finite fa ) → FiniteSet (fin-less fa n<m )
384 fin-< {A} {n} fa n<m = iso-fin (Fin2Finite n) iso where
385 m = FiniteSet.finite fa
386 iso : Bijection (Fin n) (fin-less fa n<m )
387 lemma11f : {n : ℕ } {x : Fin n } → (n<m : n < m ) → toℕ (fromℕ< (NP.<-trans (toℕ<n x) n<m)) ≡ toℕ x
388 lemma11f {n} {x} n<m = begin
389 toℕ (fromℕ< (NP.<-trans (toℕ<n x) n<m))
390 ≡⟨ toℕ-fromℕ< _ ⟩
391 toℕ x
392 ∎ where
393 open ≡-Reasoning
394 fun← iso (elm1 elm x) = fromℕ< x
395 fun→ iso x = elm1 (FiniteSet.Q←F fa (fromℕ< (NP.<-trans x<n n<m ))) to<n where
396 x<n : toℕ x < n
397 x<n = toℕ<n x
398 to<n : toℕ (FiniteSet.F←Q fa (FiniteSet.Q←F fa (fromℕ< (NP.<-trans x<n n<m)))) < n
399 to<n = subst (λ k → toℕ k < n ) (sym (FiniteSet.finiso← fa _ )) (subst (λ k → k < n ) (sym ( toℕ-fromℕ< (NP.<-trans x<n n<m) )) x<n )
400 fiso← iso x = lemma2 where
401 lemma2 : fromℕ< (subst (λ k → toℕ k < n) (sym
402 (FiniteSet.finiso← fa (fromℕ< (NP.<-trans (toℕ<n x) n<m)))) (subst (λ k → k < n)
403 (sym (toℕ-fromℕ< (NP.<-trans (toℕ<n x) n<m))) (toℕ<n x))) ≡ x
404 lemma2 = begin
405 fromℕ< (subst (λ k → toℕ k < n) (sym
406 (FiniteSet.finiso← fa (fromℕ< (NP.<-trans (toℕ<n x) n<m)))) (subst (λ k → k < n)
407 (sym (toℕ-fromℕ< (NP.<-trans (toℕ<n x) n<m))) (toℕ<n x)))
408 ≡⟨⟩
409 fromℕ< ( subst (λ k → toℕ ( k ) < n ) (sym (FiniteSet.finiso← fa _ )) lemma6 )
410 ≡⟨ lemma10 (cong (λ k → toℕ k) (FiniteSet.finiso← fa _ ) ) ⟩
411 fromℕ< lemma6
412 ≡⟨ lemma10 (lemma11 n<m ) ⟩
413 fromℕ< ( toℕ<n x )
414 ≡⟨ fromℕ<-toℕ _ _ ⟩
415 x
416 ∎ where
417 open ≡-Reasoning
418 lemma6 : toℕ (fromℕ< (NP.<-trans (toℕ<n x) n<m)) < n
419 lemma6 = subst ( λ k → k < n ) (sym (toℕ-fromℕ< (NP.<-trans (toℕ<n x) n<m))) (toℕ<n x )
420 fiso→ iso (elm1 elm x) = ? where -- fin-less-cong fa n<m _ _ lemma (lemma8 (cong (λ k → toℕ (FiniteSet.F←Q fa k) ) lemma ) ) where
421 lemma13 : toℕ (fromℕ< x) ≡ toℕ (FiniteSet.F←Q fa elm)
422 lemma13 = begin
423 toℕ (fromℕ< x)
424 ≡⟨ toℕ-fromℕ< _ ⟩
425 toℕ (FiniteSet.F←Q fa elm)
426 ∎ where open ≡-Reasoning
427 lemma : FiniteSet.Q←F fa (fromℕ< (NP.<-trans (toℕ<n (Bijection.fun← iso (elm1 elm x))) n<m)) ≡ elm
428 lemma = begin
429 FiniteSet.Q←F fa (fromℕ< (NP.<-trans (toℕ<n (Bijection.fun← iso (elm1 elm x))) n<m))
430 ≡⟨⟩
431 FiniteSet.Q←F fa (fromℕ< ( NP.<-trans (toℕ<n ( fromℕ< x ) ) n<m))
432 ≡⟨ cong (λ k → FiniteSet.Q←F fa k) (lemma10 lemma13 ) ⟩
433 FiniteSet.Q←F fa (fromℕ< ( NP.<-trans x n<m))
434 ≡⟨ cong (λ k → FiniteSet.Q←F fa k) (lemma10 refl ) ⟩
435 FiniteSet.Q←F fa (fromℕ< ( toℕ<n (FiniteSet.F←Q fa elm)))
436 ≡⟨ cong (λ k → FiniteSet.Q←F fa k ) ( fromℕ<-toℕ _ _ ) ⟩
437 FiniteSet.Q←F fa (FiniteSet.F←Q fa elm )
438 ≡⟨ FiniteSet.finiso→ fa _ ⟩
439 elm
440 ∎ where open ≡-Reasoning
441 373
442 open import Data.List 374 open import Data.List
443 375
444 open FiniteSet 376 open FiniteSet
445 377
471 phase1 finq q (x ∷ qs) with equal? finq q x 403 phase1 finq q (x ∷ qs) with equal? finq q x
472 ... | true = phase2 finq q qs 404 ... | true = phase2 finq q qs
473 ... | false = phase1 finq q qs 405 ... | false = phase1 finq q qs
474 406
475 dup-in-list : { Q : Set } (finq : FiniteSet Q) (q : Q) (qs : List Q ) → Bool 407 dup-in-list : { Q : Set } (finq : FiniteSet Q) (q : Q) (qs : List Q ) → Bool
476 dup-in-list {Q} finq q qs = phase1 finq q qs 408 dup-in-list {Q} finq q qs = phase1 finq q qs
477 409
478 -- 410 --
479 -- if length of the list is longer than kinds of a finite set, there is a duplicate 411 -- if length of the list is longer than kinds of a finite set, there is a duplicate
480 -- prove this based on the theorem on Data.Fin 412 -- prove this based on the theorem on Data.Fin
481 -- 413 --
482 414
483 dup-in-list+fin : { Q : Set } (finq : FiniteSet Q) 415 dup-in-list+fin : { Q : Set } (finq : FiniteSet Q)
484 → (q : Q) (qs : List Q ) 416 → (q : Q) (qs : List Q )
485 → fin-dup-in-list (F←Q finq q) (map (F←Q finq) qs) ≡ true 417 → fin-dup-in-list (F←Q finq q) (map (F←Q finq) qs) ≡ true
486 → dup-in-list finq q qs ≡ true 418 → dup-in-list finq q qs ≡ true
487 dup-in-list+fin {Q} finq q qs p = i-phase1 qs p where 419 dup-in-list+fin {Q} finq q qs p = i-phase1 qs p where
488 i-phase2 : (qs : List Q) → fin-phase2 (F←Q finq q) (map (F←Q finq) qs) ≡ true 420 i-phase2 : (qs : List Q) → fin-phase2 (F←Q finq q) (map (F←Q finq) qs) ≡ true
489 → phase2 finq q qs ≡ true 421 → phase2 finq q qs ≡ true
490 i-phase2 (x ∷ qs) p with equal? finq q x in eq | <-fcmp (F←Q finq q) (F←Q finq x) 422 i-phase2 (x ∷ qs) p with equal? finq q x in eq | <-fcmp (F←Q finq q) (F←Q finq x)
491 ... | true | t = refl 423 ... | true | t = refl
492 ... | false | tri< a ¬b ¬c = i-phase2 qs p 424 ... | false | tri< a ¬b ¬c = i-phase2 qs p
493 ... | false | tri≈ ¬a b ¬c = ⊥-elim (¬-bool eq 425 ... | false | tri≈ ¬a b ¬c = ⊥-elim (¬-bool eq
494 (subst₂ (λ j k → equal? finq j k ≡ true) (finiso→ finq q) (subst (λ k → Q←F finq k ≡ x) (sym b) (finiso→ finq x)) ( equal?-refl finq ))) 426 (subst₂ (λ j k → equal? finq j k ≡ true) (finiso→ finq q) (subst (λ k → Q←F finq k ≡ x) (sym b) (finiso→ finq x)) ( equal?-refl finq )))
495 ... | false | tri> ¬a ¬b c = i-phase2 qs p 427 ... | false | tri> ¬a ¬b c = i-phase2 qs p
496 i-phase1 : (qs : List Q) → fin-phase1 (F←Q finq q) (map (F←Q finq) qs) ≡ true 428 i-phase1 : (qs : List Q) → fin-phase1 (F←Q finq q) (map (F←Q finq) qs) ≡ true
497 → phase1 finq q qs ≡ true 429 → phase1 finq q qs ≡ true
498 i-phase1 (x ∷ qs) p with equal? finq q x in eq | <-fcmp (F←Q finq q) (F←Q finq x) 430 i-phase1 (x ∷ qs) p with equal? finq q x in eq | <-fcmp (F←Q finq q) (F←Q finq x)
499 ... | true | tri< a ¬b ¬c = ⊥-elim ( nat-≡< (cong (λ x → toℕ (F←Q finq x)) ( equal→refl finq eq )) a ) 431 ... | true | tri< a ¬b ¬c = ⊥-elim ( nat-≡< (cong (λ x → toℕ (F←Q finq x)) ( equal→refl finq eq )) a )
500 ... | true | tri≈ ¬a b ¬c = i-phase2 qs p 432 ... | true | tri≈ ¬a b ¬c = i-phase2 qs p
501 ... | true | tri> ¬a ¬b c = ⊥-elim ( nat-≡< (cong (λ x → toℕ (F←Q finq x)) (sym ( equal→refl finq eq ))) c ) 433 ... | true | tri> ¬a ¬b c = ⊥-elim ( nat-≡< (cong (λ x → toℕ (F←Q finq x)) (sym ( equal→refl finq eq ))) c )
502 ... | false | tri< a ¬b ¬c = i-phase1 qs p 434 ... | false | tri< a ¬b ¬c = i-phase1 qs p
521 dl01 = subst (λ k → fin-dup-in-list k (map (F←Q finq) qs) ≡ true ) 453 dl01 = subst (λ k → fin-dup-in-list k (map (F←Q finq) qs) ≡ true )
522 (sym (finiso← finq _)) ( FDup-in-list.is-dup dl ) 454 (sym (finiso← finq _)) ( FDup-in-list.is-dup dl )
523 455
524 open import bijection using ( InjectiveF ; Is ) 456 open import bijection using ( InjectiveF ; Is )
525 457
526 -- open import Relation.Binary.HeterogeneousEquality as HE using (_≅_ ) 458 -- open import Relation.Binary.HeterogeneousEquality as HE using (_≅_ )
527 459
528 inject-fin : {A B : Set} (fa : FiniteSet A ) 460 inject-fin : {A B : Set} (fa : FiniteSet A )
529 → (fi : InjectiveF B A) 461 → (fi : InjectiveF B A)
530 → (is-B : (a : A ) → Dec (Is B A (InjectiveF.f fi) a) ) 462 → (is-B : (a : A ) → Dec (Is B A (InjectiveF.f fi) a) )
531 → FiniteSet B 463 → FiniteSet B
532 inject-fin {A} {B} fa fi is-B with finite fa in eq1 464 inject-fin {A} {B} fa fi is-B with finite fa in eq1
533 ... | zero = record { 465 ... | zero = record {
534 finite = 0 466 finite = 0
535 ; Q←F = λ () 467 ; Q←F = λ ()
536 ; F←Q = λ b → ⊥-elim ( lem00 b) 468 ; F←Q = λ b → ⊥-elim ( lem00 b)
537 ; finiso→ = λ b → ⊥-elim ( lem00 b) 469 ; finiso→ = λ b → ⊥-elim ( lem00 b)
549 } where 481 } where
550 f = InjectiveF.f fi 482 f = InjectiveF.f fi
551 pfa<fa : pfa < finite fa 483 pfa<fa : pfa < finite fa
552 pfa<fa = subst (λ k → pfa < k ) (sym eq1) a<sa 484 pfa<fa = subst (λ k → pfa < k ) (sym eq1) a<sa
553 0<fa : 0 < finite fa 485 0<fa : 0 < finite fa
554 0<fa = <-transˡ (s≤s z≤n) pfa<fa 486 0<fa = <-transˡ (s≤s z≤n) pfa<fa
555 487
556 count-B : ℕ → ℕ 488 count-B : ℕ → ℕ
557 count-B zero with is-B (Q←F fa ( fromℕ< {0} 0<fa )) 489 count-B zero with is-B (Q←F fa ( fromℕ< {0} 0<fa ))
558 ... | yes isb = 1 490 ... | yes isb = 1
559 ... | no nisb = 0 491 ... | no nisb = 0
580 ... | case1 refl = ≤-refl 512 ... | case1 refl = ≤-refl
581 ... | case2 i<j = lem00 _ _ i<j where 513 ... | case2 i<j = lem00 _ _ i<j where
582 lem00 : (i j : ℕ) → i < j → count-B i ≤ count-B j 514 lem00 : (i j : ℕ) → i < j → count-B i ≤ count-B j
583 lem00 i (suc j) (s≤s i<j) = ≤-trans (count-B-mono i<j) (lem01 j) where 515 lem00 i (suc j) (s≤s i<j) = ≤-trans (count-B-mono i<j) (lem01 j) where
584 lem01 : (j : ℕ) → count-B j ≤ count-B (suc j) 516 lem01 : (j : ℕ) → count-B j ≤ count-B (suc j)
585 lem01 zero with <-cmp (finite fa) 1 517 lem01 zero with <-cmp (finite fa) 1
586 lem01 zero | tri< a ¬b ¬c = ≤-refl 518 lem01 zero | tri< a ¬b ¬c = ≤-refl
587 lem01 zero | tri≈ ¬a b ¬c = ≤-refl 519 lem01 zero | tri≈ ¬a b ¬c = ≤-refl
588 lem01 zero | tri> ¬a ¬b c with is-B (Q←F fa (fromℕ< c)) | is-B (Q←F fa ( fromℕ< {0} 0<fa )) 520 lem01 zero | tri> ¬a ¬b c with is-B (Q←F fa (fromℕ< c)) | is-B (Q←F fa ( fromℕ< {0} 0<fa ))
589 ... | yes isb1 | yes isb0 = s≤s z≤n 521 ... | yes isb1 | yes isb0 = s≤s z≤n
590 ... | yes isb1 | no nisb0 = z≤n 522 ... | yes isb1 | no nisb0 = z≤n
591 ... | no nisb1 | yes isb0 = refl-≤≡ (sym lem14 ) where 523 ... | no nisb1 | yes isb0 = refl-≤≡ (sym lem14 ) where
592 lem14 : count-B 0 ≡ 1 524 lem14 : count-B 0 ≡ 1 -- in-equality does not work we have to repeat the proof
593 lem14 with is-B (Q←F fa ( fromℕ< {0} 0<fa )) 525 lem14 with is-B (Q←F fa ( fromℕ< {0} 0<fa ))
594 ... | yes isb = refl 526 ... | yes isb = refl
595 ... | no ne = ⊥-elim (ne isb0) 527 ... | no ne = ⊥-elim (ne isb0)
596 ... | no nisb1 | no nisb0 = z≤n 528 ... | no nisb1 | no nisb0 = z≤n
597 lem01 (suc i) with <-cmp (finite fa) (suc i) | <-cmp (finite fa) (suc (suc i)) 529 lem01 (suc i) with <-cmp (finite fa) (suc i) | <-cmp (finite fa) (suc (suc i))
598 ... | tri< a ¬b ¬c | tri< a₁ ¬b₁ ¬c₁ = refl-≤≡ (sym lem14) where 530 ... | tri< a ¬b ¬c | tri< a₁ ¬b₁ ¬c₁ = refl-≤≡ (sym lem14) where
599 lem14 : count-B (suc i) ≡ count-B i 531 lem14 : count-B (suc i) ≡ count-B i
600 lem14 with <-cmp (finite fa) (suc i) 532 lem14 with <-cmp (finite fa) (suc i)
601 ... | tri< a ¬b ¬c = refl 533 ... | tri< a ¬b ¬c = refl
602 ... | tri≈ ¬a b ¬c = ⊥-elim ( ¬a a ) 534 ... | tri≈ ¬a b ¬c = ⊥-elim ( ¬a a )
603 ... | tri> ¬a ¬b c = ⊥-elim ( ¬a a ) 535 ... | tri> ¬a ¬b c = ⊥-elim ( ¬a a )
604 ... | tri< a ¬b ¬c | tri≈ ¬a b ¬c₁ = ⊥-elim (nat-≡< b (<-trans a a<sa)) 536 ... | tri< a ¬b ¬c | tri≈ ¬a b ¬c₁ = ⊥-elim (nat-≡< b (<-trans a a<sa))
605 ... | tri< a ¬b ¬c | tri> ¬a ¬b₁ c = ⊥-elim (nat-<> a (<-trans a<sa c) ) 537 ... | tri< a ¬b ¬c | tri> ¬a ¬b₁ c = ⊥-elim (nat-<> a (<-trans a<sa c) )
606 ... | tri≈ ¬a b ¬c | tri< a ¬b ¬c₁ = refl-≤≡ (sym ?) 538 ... | tri≈ ¬a b ¬c | tri< a ¬b ¬c₁ = refl-≤≡ (sym lem14 ) where
539 lem14 : count-B (suc i) ≡ count-B i
540 lem14 with <-cmp (finite fa) (suc i)
541 ... | tri< a ¬b ¬c = refl
542 ... | tri≈ ¬a b ¬c = refl
543 ... | tri> ¬a ¬b c = ⊥-elim ( ¬c c )
607 ... | tri≈ ¬a b ¬c | tri≈ ¬a₁ b₁ ¬c₁ = ⊥-elim (nat-≡< (sym b) (subst (λ k → _ < k ) (sym b₁) a<sa) ) 544 ... | tri≈ ¬a b ¬c | tri≈ ¬a₁ b₁ ¬c₁ = ⊥-elim (nat-≡< (sym b) (subst (λ k → _ < k ) (sym b₁) a<sa) )
608 ... | tri≈ ¬a b ¬c | tri> ¬a₁ ¬b c = ⊥-elim (nat-≡< (sym b) (<-trans a<sa c)) 545 ... | tri≈ ¬a b ¬c | tri> ¬a₁ ¬b c = ⊥-elim (nat-≡< (sym b) (<-trans a<sa c))
609 ... | tri> ¬a ¬b c | tri< a ¬b₁ ¬c = ⊥-elim (nat-≤> a (<-transʳ c a<sa ) ) 546 ... | tri> ¬a ¬b c | tri< a ¬b₁ ¬c = ⊥-elim (nat-≤> a (<-transʳ c a<sa ) )
610 ... | tri> ¬a ¬b c | tri≈ ¬a₁ b ¬c with is-B (Q←F fa (fromℕ< c)) 547 ... | tri> ¬a ¬b c | tri≈ ¬a₁ b ¬c with is-B (Q←F fa (fromℕ< c))
611 ... | yes isb = refl-≤≡ (sym ?) 548 ... | yes isb = refl-≤≡ (sym lem14) where
612 ... | no nisb = refl-≤≡ (sym ?) 549 lem14 : count-B (suc i) ≡ suc (count-B i)
613 lem01 (suc i) | tri> ¬a ¬b c | tri> ¬a₁ ¬b₁ c₁ 550 lem14 with <-cmp (finite fa) (suc i)
614 with is-B (Q←F fa (fromℕ< c)) | is-B (Q←F fa (fromℕ< c₁)) 551 ... | tri< a₂ ¬b₂ ¬c₂ = ⊥-elim (¬c₂ c)
615 ... | yes isb0 | yes isb1 = ≤-trans (refl-≤≡ (sym ?)) a≤sa 552 ... | tri≈ ¬a₂ b₂ ¬c₂ = ⊥-elim (¬c₂ c)
616 ... | yes isb0 | no nisb1 = refl-≤≡ (sym ?) 553 ... | tri> ¬a₂ ¬b₂ c₂ with is-B (Q←F fa ( fromℕ< c₂ ))
617 ... | no nisb0 | yes isb1 = ≤-trans (refl-≤≡ (sym ?)) a≤sa 554 ... | yes isb = refl
618 ... | no nisb0 | no nisb1 = refl-≤≡ (sym ?) 555 ... | no ne = ⊥-elim (ne record {a = Is.a isb ; fa=c = trans (Is.fa=c isb) (cong (λ k → Q←F fa k) (lemma10 refl )) } )
556 ... | no nisb = refl-≤≡ (sym lem14) where
557 lem14 : count-B (suc i) ≡ count-B i
558 lem14 with <-cmp (finite fa) (suc i)
559 ... | tri< a₂ ¬b₂ ¬c₂ = ⊥-elim (¬c₂ c)
560 ... | tri≈ ¬a₂ b₂ ¬c₂ = ⊥-elim (¬c₂ c)
561 ... | tri> ¬a₂ ¬b₂ c₂ with is-B (Q←F fa ( fromℕ< c₂ ))
562 ... | yes isb = ⊥-elim (nisb record {a = Is.a isb ; fa=c = trans (Is.fa=c isb) (cong (λ k → Q←F fa k) (lemma10 refl )) } )
563 ... | no ne = refl
564 lem01 (suc i) | tri> ¬a ¬b c | tri> ¬a₁ ¬b₁ c₁
565 with is-B (Q←F fa (fromℕ< c)) | is-B (Q←F fa (fromℕ< c₁))
566 ... | yes isb0 | yes isb1 = ≤-trans (refl-≤≡ (sym lem14)) a≤sa where
567 lem14 : count-B (suc i) ≡ suc (count-B i)
568 lem14 with <-cmp (finite fa) (suc i)
569 ... | tri< a₂ ¬b₂ ¬c₂ = ⊥-elim (¬c₂ c)
570 ... | tri≈ ¬a₂ b₂ ¬c₂ = ⊥-elim (¬c₂ c)
571 ... | tri> ¬a₂ ¬b₂ c₂ with is-B (Q←F fa ( fromℕ< c₂ ))
572 ... | no ne = ⊥-elim (ne record {a = Is.a isb0 ; fa=c = trans (Is.fa=c isb0) (cong (λ k → Q←F fa k) (lemma10 refl )) } )
573 ... | yes isb = refl
574 ... | yes isb0 | no nisb1 = refl-≤≡ (sym lem14) where
575 lem14 : count-B (suc i) ≡ suc (count-B i)
576 lem14 with <-cmp (finite fa) (suc i)
577 ... | tri< a₂ ¬b₂ ¬c₂ = ⊥-elim (¬c₂ c)
578 ... | tri≈ ¬a₂ b₂ ¬c₂ = ⊥-elim (¬c₂ c)
579 ... | tri> ¬a₂ ¬b₂ c₂ with is-B (Q←F fa ( fromℕ< c₂ ))
580 ... | no ne = ⊥-elim (ne record {a = Is.a isb0 ; fa=c = trans (Is.fa=c isb0) (cong (λ k → Q←F fa k) (lemma10 refl )) } )
581 ... | yes isb = refl
582 ... | no nisb0 | yes isb1 = ≤-trans (refl-≤≡ (sym lem14)) a≤sa where
583 lem14 : count-B (suc i) ≡ count-B i
584 lem14 with <-cmp (finite fa) (suc i)
585 ... | tri< a₂ ¬b₂ ¬c₂ = ⊥-elim (¬c₂ c)
586 ... | tri≈ ¬a₂ b₂ ¬c₂ = ⊥-elim (¬c₂ c)
587 ... | tri> ¬a₂ ¬b₂ c₂ with is-B (Q←F fa ( fromℕ< c₂ ))
588 ... | no ne = refl
589 ... | yes isb = ⊥-elim (nisb0 record {a = Is.a isb ; fa=c = trans (Is.fa=c isb) (cong (λ k → Q←F fa k) (lemma10 refl )) } )
590 ... | no nisb0 | no nisb1 = refl-≤≡ (sym lem14) where
591 lem14 : count-B (suc i) ≡ count-B i
592 lem14 with <-cmp (finite fa) (suc i)
593 ... | tri< a₂ ¬b₂ ¬c₂ = ⊥-elim (¬c₂ c)
594 ... | tri≈ ¬a₂ b₂ ¬c₂ = ⊥-elim (¬c₂ c)
595 ... | tri> ¬a₂ ¬b₂ c₂ with is-B (Q←F fa ( fromℕ< c₂ ))
596 ... | no ne = refl
597 ... | yes isb = ⊥-elim (nisb0 record {a = Is.a isb ; fa=c = trans (Is.fa=c isb) (cong (λ k → Q←F fa k) (lemma10 refl )) } )
619 598
620 lem31 : (b : B) → 0 < count-B (toℕ (F←Q fa (f b))) 599 lem31 : (b : B) → 0 < count-B (toℕ (F←Q fa (f b)))
621 lem31 b = lem32 (toℕ (F←Q fa (f b))) refl where 600 lem31 b = lem32 (toℕ (F←Q fa (f b))) refl where
622 lem32 : (i : ℕ) → toℕ (F←Q fa (f b)) ≡ i → 0 < count-B i 601 lem32 : (i : ℕ) → toℕ (F←Q fa (f b)) ≡ i → 0 < count-B i
623 lem32 zero eq with is-B (Q←F fa ( fromℕ< {0} 0<fa )) 602 lem32 zero eq with is-B (Q←F fa ( fromℕ< {0} 0<fa ))
624 ... | yes isb = s≤s z≤n 603 ... | yes isb = s≤s z≤n
625 ... | no nisb = ⊥-elim ( nisb record { a = b ; fa=c = lem33 } ) where 604 ... | no nisb = ⊥-elim ( nisb record { a = b ; fa=c = lem33 } ) where
626 lem33 : f b ≡ Q←F fa ( fromℕ< {0} 0<fa ) 605 lem33 : f b ≡ Q←F fa ( fromℕ< {0} 0<fa )
627 lem33 = begin 606 lem33 = begin
628 f b ≡⟨ sym (finiso→ fa _) ⟩ 607 f b ≡⟨ sym (finiso→ fa _) ⟩
629 Q←F fa ( F←Q fa (f b)) ≡⟨ sym (cong (λ k → Q←F fa k) ( fromℕ<-toℕ _ (fin<n _))) ⟩ 608 Q←F fa ( F←Q fa (f b)) ≡⟨ sym (cong (λ k → Q←F fa k) ( fromℕ<-toℕ _ (fin<n _))) ⟩
630 Q←F fa ( fromℕ< (fin<n _) ) ≡⟨ cong (λ k → Q←F fa k) (fromℕ<-cong _ _ eq (fin<n _) 0<fa) ⟩ 609 Q←F fa ( fromℕ< (fin<n _) ) ≡⟨ cong (λ k → Q←F fa k) (fromℕ<-cong _ _ eq (fin<n _) 0<fa) ⟩
631 Q←F fa ( fromℕ< {0} 0<fa ) ∎ where 610 Q←F fa ( fromℕ< {0} 0<fa ) ∎ where
632 open ≡-Reasoning 611 open ≡-Reasoning
633 lem32 (suc i) eq with <-cmp (finite fa) (suc i) 612 lem32 (suc i) eq with <-cmp (finite fa) (suc i)
634 ... | tri< a ¬b ¬c = ⊥-elim ( nat-≡< eq (<-trans (fin<n _) a) ) 613 ... | tri< a ¬b ¬c = ⊥-elim ( nat-≡< eq (<-trans (fin<n _) a) )
635 ... | tri≈ ¬a eq1 ¬c = ⊥-elim ( nat-≡< eq (subst (λ k → toℕ (F←Q fa (f b)) < k ) eq1 (fin<n _))) 614 ... | tri≈ ¬a eq1 ¬c = ⊥-elim ( nat-≡< eq (subst (λ k → toℕ (F←Q fa (f b)) < k ) eq1 (fin<n _)))
636 ... | tri> ¬a ¬b c with is-B (Q←F fa (fromℕ< c)) 615 ... | tri> ¬a ¬b c with is-B (Q←F fa (fromℕ< c))
637 ... | yes isb = s≤s z≤n 616 ... | yes isb = s≤s z≤n
638 ... | no nisb = ⊥-elim ( nisb record { a = b ; fa=c = lem33 } ) where 617 ... | no nisb = ⊥-elim ( nisb record { a = b ; fa=c = lem33 } ) where
639 lem33 : f b ≡ Q←F fa ( fromℕ< c) 618 lem33 : f b ≡ Q←F fa ( fromℕ< c)
640 lem33 = begin 619 lem33 = begin
641 f b ≡⟨ sym (finiso→ fa _) ⟩ 620 f b ≡⟨ sym (finiso→ fa _) ⟩
642 Q←F fa ( F←Q fa (f b)) ≡⟨ sym (cong (λ k → Q←F fa k) ( fromℕ<-toℕ _ (fin<n _))) ⟩ 621 Q←F fa ( F←Q fa (f b)) ≡⟨ sym (cong (λ k → Q←F fa k) ( fromℕ<-toℕ _ (fin<n _))) ⟩
643 Q←F fa ( fromℕ< (fin<n _) ) ≡⟨ cong (λ k → Q←F fa k) (fromℕ<-cong _ _ eq (fin<n _) c ) ⟩ 622 Q←F fa ( fromℕ< (fin<n _) ) ≡⟨ cong (λ k → Q←F fa k) (fromℕ<-cong _ _ eq (fin<n _) c ) ⟩
644 Q←F fa ( fromℕ< c ) ∎ where 623 Q←F fa ( fromℕ< c ) ∎ where
645 open ≡-Reasoning 624 open ≡-Reasoning
646 625
647 cb<mb : (b : B) → pred (count-B (toℕ (F←Q fa (f b)))) < maxb 626 cb<mb : (b : B) → pred (count-B (toℕ (F←Q fa (f b)))) < maxb
648 cb<mb b = sx≤y→x<y ( begin 627 cb<mb b = sx≤y→x<y ( begin
649 suc ( pred (count-B (toℕ (F←Q fa (f b))))) ≡⟨ sucprd (lem31 b) ⟩ 628 suc ( pred (count-B (toℕ (F←Q fa (f b))))) ≡⟨ sucprd (lem31 b) ⟩
650 count-B (toℕ (F←Q fa (f b))) ≤⟨ lem02 ⟩ 629 count-B (toℕ (F←Q fa (f b))) ≤⟨ lem02 ⟩
651 count-B (finite fa) ∎ ) where 630 count-B (finite fa) ∎ ) where
652 open ≤-Reasoning 631 open ≤-Reasoning
653 lem02 : count-B (toℕ (F←Q fa (f b))) ≤ count-B (finite fa) 632 lem02 : count-B (toℕ (F←Q fa (f b))) ≤ count-B (finite fa)
654 lem02 = count-B-mono (<to≤ (fin<n {_} (F←Q fa (f b)))) 633 lem02 = count-B-mono (<to≤ (fin<n {_} (F←Q fa (f b))))
655 634
656 cb00 : (n : ℕ) → n < count-B (finite fa) → CountB n 635 cb00 : (n : ℕ) → n < count-B (finite fa) → CountB n
657 cb00 n n<cb = lem09 (finite fa) (count-B (finite fa)) (<-transˡ a<sa n<cb) refl where 636 cb00 n n<cb = lem09 (finite fa) (count-B (finite fa)) (<-transˡ a<sa n<cb) refl where
658 637
659 lem06 : (i j : ℕ) → (i<fa : i < finite fa) (j<fa : j < finite fa) 638 lem06 : (i j : ℕ) → (i<fa : i < finite fa) (j<fa : j < finite fa)
660 → Is B A f (Q←F fa (fromℕ< i<fa)) → Is B A f (Q←F fa (fromℕ< j<fa)) → count-B i ≡ count-B j → i ≡ j 639 → Is B A f (Q←F fa (fromℕ< i<fa)) → Is B A f (Q←F fa (fromℕ< j<fa)) → count-B i ≡ count-B j → i ≡ j
661 lem06 i j i<fa j<fa bi bj eq = lem08 where 640 lem06 i j i<fa j<fa bi bj eq = lem08 where
662 lem20 : (i j : ℕ) → i < j → (i<fa : i < finite fa) (j<fa : j < finite fa) 641 lem20 : (i j : ℕ) → i < j → (i<fa : i < finite fa) (j<fa : j < finite fa)
663 → Is B A f (Q←F fa (fromℕ< i<fa)) → Is B A f (Q←F fa (fromℕ< j<fa)) → count-B i < count-B j 642 → Is B A f (Q←F fa (fromℕ< i<fa)) → Is B A f (Q←F fa (fromℕ< j<fa)) → count-B i < count-B j
664 lem20 zero (suc j) i<j i<fa j<fa bi bj with <-cmp (finite fa) (suc j) 643 lem20 zero (suc j) i<j i<fa j<fa bi bj with <-cmp (finite fa) (suc j)
665 ... | tri< a ¬b ¬c = ⊥-elim (¬c j<fa) 644 ... | tri< a ¬b ¬c = ⊥-elim (¬c j<fa)
666 ... | tri≈ ¬a b ¬c = ⊥-elim (¬c j<fa) 645 ... | tri≈ ¬a b ¬c = ⊥-elim (¬c j<fa)
667 ... | tri> ¬a ¬b c with is-B (Q←F fa ( fromℕ< 0<fa )) | is-B (Q←F fa (fromℕ< c)) 646 ... | tri> ¬a ¬b c with is-B (Q←F fa ( fromℕ< 0<fa )) | is-B (Q←F fa (fromℕ< c))
668 ... | no nisc | _ = ⊥-elim (nisc record { a = Is.a bi ; fa=c = lem26 } ) where 647 ... | no nisc | _ = ⊥-elim (nisc record { a = Is.a bi ; fa=c = lem26 } ) where
669 lem26 : f (Is.a bi) ≡ Q←F fa (fromℕ< 0<fa) 648 lem26 : f (Is.a bi) ≡ Q←F fa (fromℕ< 0<fa)
670 lem26 = trans (Is.fa=c bi) (cong (Q←F fa) (fromℕ<-cong _ _ refl i<fa 0<fa) ) 649 lem26 = trans (Is.fa=c bi) (cong (Q←F fa) (fromℕ<-cong _ _ refl i<fa 0<fa) )
671 ... | yes _ | no nisc = ⊥-elim (nisc record { a = Is.a bj ; fa=c = lem26 } ) where 650 ... | yes _ | no nisc = ⊥-elim (nisc record { a = Is.a bj ; fa=c = lem26 } ) where
672 lem26 : f (Is.a bj) ≡ Q←F fa (fromℕ< c) 651 lem26 : f (Is.a bj) ≡ Q←F fa (fromℕ< c)
673 lem26 = trans (Is.fa=c bj) (cong (Q←F fa) (fromℕ<-cong _ _ refl j<fa c) ) 652 lem26 = trans (Is.fa=c bj) (cong (Q←F fa) (fromℕ<-cong _ _ refl j<fa c) )
674 ... | yes _ | yes _ = lem25 where 653 ... | yes isb1 | yes _ = lem25 where
654 lem14 : count-B 0 ≡ 1
655 lem14 with is-B (Q←F fa ( fromℕ< 0<fa ))
656 ... | no ne = ⊥-elim (ne record {a = Is.a isb1 ; fa=c = trans (Is.fa=c isb1) (cong (λ k → Q←F fa k) (lemma10 refl )) } )
657 ... | yes isb = refl
675 lem25 : 2 ≤ suc (count-B j) 658 lem25 : 2 ≤ suc (count-B j)
676 lem25 = begin 659 lem25 = begin
677 2 ≡⟨ cong suc (sym ?) ⟩ 660 2 ≡⟨ cong suc (sym lem14) ⟩
678 suc (count-B 0) ≤⟨ s≤s (count-B-mono {0} {j} z≤n) ⟩ 661 suc (count-B 0) ≤⟨ s≤s (count-B-mono {0} {j} z≤n) ⟩
679 suc (count-B j) ∎ where open ≤-Reasoning 662 suc (count-B j) ∎ where open ≤-Reasoning
680 lem20 (suc i) zero () i<fa j<fa bi bj 663 lem20 (suc i) zero () i<fa j<fa bi bj
681 lem20 (suc i) (suc j) (s≤s i<j) i<fa j<fa bi bj = lem21 where 664 lem20 (suc i) (suc j) (s≤s i<j) i<fa j<fa bi bj = lem21 where
682 -- 665 --
683 -- i < suc i ≤ j 666 -- i < suc i ≤ j
684 -- cb i < suc (cb i) < cb (suc i) ≤ cb j 667 -- cb i < suc (cb i) < cb (suc i) ≤ cb j
685 -- 668 --
686 lem23 : suc (count-B j) ≡ count-B (suc j) 669 lem23 : suc (count-B j) ≡ count-B (suc j)
687 lem23 with <-cmp (finite fa) (suc j) 670 lem23 with <-cmp (finite fa) (suc j)
688 ... | tri< a ¬b ¬c = ⊥-elim (¬c j<fa) 671 ... | tri< a ¬b ¬c = ⊥-elim (¬c j<fa)
689 ... | tri≈ ¬a b ¬c = ⊥-elim (¬c j<fa) 672 ... | tri≈ ¬a b ¬c = ⊥-elim (¬c j<fa)
690 ... | tri> ¬a ¬b c with is-B (Q←F fa (fromℕ< c)) 673 ... | tri> ¬a ¬b c with is-B (Q←F fa (fromℕ< c))
691 ... | yes _ = refl 674 ... | yes _ = refl
692 ... | no nisa = ⊥-elim ( nisa record { a = Is.a bj ; fa=c = lem26 } ) where 675 ... | no nisa = ⊥-elim ( nisa record { a = Is.a bj ; fa=c = lem26 } ) where
693 lem26 : f (Is.a bj) ≡ Q←F fa (fromℕ< c) 676 lem26 : f (Is.a bj) ≡ Q←F fa (fromℕ< c)
694 lem26 = trans (Is.fa=c bj) (cong (Q←F fa) (fromℕ<-cong _ _ refl j<fa c) ) 677 lem26 = trans (Is.fa=c bj) (cong (Q←F fa) (fromℕ<-cong _ _ refl j<fa c) )
695 lem21 : count-B (suc i) < count-B (suc j) 678 lem21 : count-B (suc i) < count-B (suc j)
704 ... | tri< a ¬b ¬c = ⊥-elim (nat-≡< eq ( lem20 i j a i<fa j<fa bi bj )) 687 ... | tri< a ¬b ¬c = ⊥-elim (nat-≡< eq ( lem20 i j a i<fa j<fa bi bj ))
705 ... | tri≈ ¬a b ¬c = b 688 ... | tri≈ ¬a b ¬c = b
706 ... | tri> ¬a ¬b c₁ = ⊥-elim (nat-≡< (sym eq) ( lem20 j i c₁ j<fa i<fa bj bi )) 689 ... | tri> ¬a ¬b c₁ = ⊥-elim (nat-≡< (sym eq) ( lem20 j i c₁ j<fa i<fa bj bi ))
707 690
708 lem09 : (i j : ℕ) → suc n ≤ j → j ≡ count-B i → CountB n 691 lem09 : (i j : ℕ) → suc n ≤ j → j ≡ count-B i → CountB n
709 lem09 0 (suc j) (s≤s le) eq with is-B (Q←F fa (fromℕ< {0} 0<fa )) 692 lem09 0 (suc j) (s≤s le) eq with is-B (Q←F fa (fromℕ< {0} 0<fa ))
710 ... | no nisb = ⊥-elim ( nat-≡< (sym eq) (s≤s z≤n) ) 693 ... | no nisb = ⊥-elim ( nat-≡< (sym eq) (s≤s z≤n) )
711 ... | yes isb with ≤-∨ (s≤s le) 694 ... | yes isb with ≤-∨ (s≤s le)
712 ... | case1 eq2 = record { b = Is.a isb ; cb = 0 ; b=cn = lem10 ; cb=n = trans ? (sym (trans eq2 eq)) 695 ... | case1 eq2 = record { b = Is.a isb ; cb = 0 ; b=cn = lem10 ; cb=n = trans lem14 (sym (trans eq2 eq))
713 ; cb-inject = λ cb1 c1<fa b1 eq → lem06 0 cb1 0<fa c1<fa isb b1 eq } where 696 ; cb-inject = λ cb1 c1<fa b1 eq → lem06 0 cb1 0<fa c1<fa isb b1 eq } where
697 lem14 : count-B 0 ≡ 1
698 lem14 with is-B (Q←F fa ( fromℕ< 0<fa ))
699 ... | no ne = ⊥-elim (ne record {a = Is.a isb ; fa=c = trans (Is.fa=c isb) (cong (λ k → Q←F fa k) (lemma10 refl )) } )
700 ... | yes isb = refl
714 lem10 : 0 ≡ toℕ (F←Q fa (f (Is.a isb))) 701 lem10 : 0 ≡ toℕ (F←Q fa (f (Is.a isb)))
715 lem10 = begin 702 lem10 = begin
716 0 ≡⟨ sym ( toℕ-fromℕ< 0<fa ) ⟩ 703 0 ≡⟨ sym ( toℕ-fromℕ< 0<fa ) ⟩
717 toℕ (fromℕ< {0} 0<fa ) ≡⟨ cong toℕ (sym (finiso← fa _)) ⟩ 704 toℕ (fromℕ< {0} 0<fa ) ≡⟨ cong toℕ (sym (finiso← fa _)) ⟩
718 toℕ (F←Q fa (Q←F fa (fromℕ< {0} 0<fa ))) ≡⟨ cong (λ k → toℕ ((F←Q fa k))) (sym (Is.fa=c isb)) ⟩ 705 toℕ (F←Q fa (Q←F fa (fromℕ< {0} 0<fa ))) ≡⟨ cong (λ k → toℕ ((F←Q fa k))) (sym (Is.fa=c isb)) ⟩
719 toℕ (F←Q fa (f (Is.a isb))) ∎ where open ≡-Reasoning 706 toℕ (F←Q fa (f (Is.a isb))) ∎ where open ≡-Reasoning
720 ... | case2 (s≤s lt) = ⊥-elim ( nat-≡< (sym eq) (s≤s (<-transʳ z≤n lt) )) 707 ... | case2 (s≤s lt) = ⊥-elim ( nat-≡< (sym eq) (s≤s (<-transʳ z≤n lt) ))
721 lem09 (suc i) (suc j) (s≤s le) eq with <-cmp (finite fa) (suc i) 708 lem09 (suc i) (suc j) (s≤s le) eq with <-cmp (finite fa) (suc i)
722 ... | tri< a ¬b ¬c = lem09 i (suc j) (s≤s le) eq 709 ... | tri< a ¬b ¬c = lem09 i (suc j) (s≤s le) eq
723 ... | tri≈ ¬a b ¬c = lem09 i (suc j) (s≤s le) eq 710 ... | tri≈ ¬a b ¬c = lem09 i (suc j) (s≤s le) eq
724 ... | tri> ¬a ¬b c with is-B (Q←F fa (fromℕ< c)) 711 ... | tri> ¬a ¬b c with is-B (Q←F fa (fromℕ< c))
725 ... | no nisb = lem09 i (suc j) (s≤s le) eq 712 ... | no nisb = lem09 i (suc j) (s≤s le) eq
726 ... | yes isb with ≤-∨ (s≤s le) 713 ... | yes isb with ≤-∨ (s≤s le)
727 ... | case1 eq2 = record { b = Is.a isb ; cb = suc i ; b=cn = lem11 ; cb=n = trans ? (sym (trans eq2 eq )) 714 ... | case1 eq2 = record { b = Is.a isb ; cb = suc i ; b=cn = lem11 ; cb=n = trans lem14 (sym (trans eq2 eq ))
728 ; cb-inject = λ cb1 c1<fa b1 eq → lem06 (suc i) cb1 c c1<fa isb b1 eq } where 715 ; cb-inject = λ cb1 c1<fa b1 eq → lem06 (suc i) cb1 c c1<fa isb b1 eq } where
716 lem14 : count-B (suc i) ≡ suc (count-B i)
717 lem14 with <-cmp (finite fa) (suc i)
718 ... | tri< a₂ ¬b₂ ¬c₂ = ⊥-elim (¬c₂ c)
719 ... | tri≈ ¬a₂ b₂ ¬c₂ = ⊥-elim (¬c₂ c)
720 ... | tri> ¬a₂ ¬b₂ c₂ with is-B (Q←F fa ( fromℕ< c₂ ))
721 ... | yes isb = refl
722 ... | no ne = ⊥-elim (ne record {a = Is.a isb ; fa=c = trans (Is.fa=c isb) (cong (λ k → Q←F fa k) (lemma10 refl )) } )
729 lem11 : suc i ≡ toℕ (F←Q fa (f (Is.a isb))) 723 lem11 : suc i ≡ toℕ (F←Q fa (f (Is.a isb)))
730 lem11 = begin 724 lem11 = begin
731 suc i ≡⟨ sym ( toℕ-fromℕ< c) ⟩ 725 suc i ≡⟨ sym ( toℕ-fromℕ< c) ⟩
732 toℕ (fromℕ< c) ≡⟨ cong toℕ (sym (finiso← fa _)) ⟩ 726 toℕ (fromℕ< c) ≡⟨ cong toℕ (sym (finiso← fa _)) ⟩
733 toℕ (F←Q fa (Q←F fa (fromℕ< c ))) ≡⟨ cong (λ k → toℕ ((F←Q fa k))) (sym (Is.fa=c isb)) ⟩ 727 toℕ (F←Q fa (Q←F fa (fromℕ< c ))) ≡⟨ cong (λ k → toℕ ((F←Q fa k))) (sym (Is.fa=c isb)) ⟩
734 toℕ (F←Q fa (f (Is.a isb))) ∎ where open ≡-Reasoning 728 toℕ (F←Q fa (f (Is.a isb))) ∎ where open ≡-Reasoning
735 ... | case2 (s≤s lt) = lem09 i j lt (cong pred eq) 729 ... | case2 (s≤s lt) = lem09 i j lt (cong pred eq)
736 730
737 iso0 : (x : Fin maxb) → fromℕ< (cb<mb (CountB.b (cb00 (toℕ x) (fin<n _)))) ≡ x 731 iso0 : (x : Fin maxb) → fromℕ< (cb<mb (CountB.b (cb00 (toℕ x) (fin<n _)))) ≡ x
738 iso0 x = begin 732 iso0 x = begin
739 fromℕ< (cb<mb (CountB.b (cb00 (toℕ x) (fin<n _)))) ≡⟨ fromℕ<-cong _ _ ( begin 733 fromℕ< (cb<mb (CountB.b (cb00 (toℕ x) (fin<n _)))) ≡⟨ fromℕ<-cong _ _ ( begin
740 pred (count-B (toℕ (F←Q fa (f (CountB.b (cb00 (toℕ x) (fin<n _))))))) ≡⟨ sym (cong (λ k → pred (count-B k)) (CountB.b=cn CB)) ⟩ 734 pred (count-B (toℕ (F←Q fa (f (CountB.b (cb00 (toℕ x) (fin<n _))))))) ≡⟨ sym (cong (λ k → pred (count-B k)) (CountB.b=cn CB)) ⟩
741 pred (count-B (CountB.cb CB)) ≡⟨ cong pred (CountB.cb=n CB) ⟩ 735 pred (count-B (CountB.cb CB)) ≡⟨ cong pred (CountB.cb=n CB) ⟩
742 pred (suc (toℕ x)) ≡⟨ refl ⟩ 736 pred (suc (toℕ x)) ≡⟨ refl ⟩
743 toℕ x ∎ ) (cb<mb (CountB.b CB)) (fin<n _) ⟩ 737 toℕ x ∎ ) (cb<mb (CountB.b CB)) (fin<n _) ⟩
744 fromℕ< (fin<n {_} x) ≡⟨ fromℕ<-toℕ _ (fin<n {_} x) ⟩ 738 fromℕ< (fin<n {_} x) ≡⟨ fromℕ<-toℕ _ (fin<n {_} x) ⟩
745 x ∎ where 739 x ∎ where
746 open ≡-Reasoning 740 open ≡-Reasoning
747 CB = cb00 (toℕ x) (fin<n _) 741 CB = cb00 (toℕ x) (fin<n _)
748 742
749 iso1 : (b : B) → CountB.b (cb00 (toℕ (fromℕ< (cb<mb b))) (fin<n _)) ≡ b 743 iso1 : (b : B) → CountB.b (cb00 (toℕ (fromℕ< (cb<mb b))) (fin<n _)) ≡ b
755 b ∎ where 749 b ∎ where
756 open ≡-Reasoning 750 open ≡-Reasoning
757 CB = cb00 (toℕ (fromℕ< (cb<mb b))) (fin<n _) 751 CB = cb00 (toℕ (fromℕ< (cb<mb b))) (fin<n _)
758 isb : Is B A f (Q←F fa (fromℕ< (fin<n {_} (F←Q fa (f b)) ))) 752 isb : Is B A f (Q←F fa (fromℕ< (fin<n {_} (F←Q fa (f b)) )))
759 isb = record { a = b ; fa=c = lem33 } where 753 isb = record { a = b ; fa=c = lem33 } where
760 lem33 : f b ≡ Q←F fa (fromℕ< (fin<n (F←Q fa (f b)))) 754 lem33 : f b ≡ Q←F fa (fromℕ< (fin<n (F←Q fa (f b))))
761 lem33 = begin 755 lem33 = begin
762 f b ≡⟨ sym (finiso→ fa _) ⟩ 756 f b ≡⟨ sym (finiso→ fa _) ⟩
763 Q←F fa (F←Q fa (f b)) ≡⟨ cong (Q←F fa) (sym (fromℕ<-toℕ _ (fin<n (F←Q fa (f b))))) ⟩ 757 Q←F fa (F←Q fa (f b)) ≡⟨ cong (Q←F fa) (sym (fromℕ<-toℕ _ (fin<n (F←Q fa (f b))))) ⟩
764 Q←F fa (fromℕ< (fin<n (F←Q fa (f b)))) ∎ 758 Q←F fa (fromℕ< (fin<n (F←Q fa (f b)))) ∎
765 lem30 : count-B (CountB.cb CB) ≡ count-B (toℕ (F←Q fa (InjectiveF.f fi b))) 759 lem30 : count-B (CountB.cb CB) ≡ count-B (toℕ (F←Q fa (InjectiveF.f fi b)))
766 lem30 = begin 760 lem30 = begin
767 count-B (CountB.cb CB) ≡⟨ CountB.cb=n CB ⟩ 761 count-B (CountB.cb CB) ≡⟨ CountB.cb=n CB ⟩
768 suc (toℕ (fromℕ< (cb<mb b))) ≡⟨ cong suc (toℕ-fromℕ< (cb<mb b)) ⟩ 762 suc (toℕ (fromℕ< (cb<mb b))) ≡⟨ cong suc (toℕ-fromℕ< (cb<mb b)) ⟩
769 suc (pred (count-B (toℕ (F←Q fa (f b))))) ≡⟨ sucprd (lem31 b) ⟩ 763 suc (pred (count-B (toℕ (F←Q fa (f b))))) ≡⟨ sucprd (lem31 b) ⟩
770 count-B (toℕ (F←Q fa (f b))) ∎ 764 count-B (toℕ (F←Q fa (f b))) ∎
771 765
772 766
773 -- end 767 -- end