Mercurial > hg > Members > kono > Proof > automaton
comparison automaton-in-agda/src/non-regular.agda @ 396:f26444eb0275
... look bad
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 03 Aug 2023 17:32:50 +0900 |
parents | cd81e0869fac |
children | 2e22a1f3a55a |
comparison
equal
deleted
inserted
replaced
395:cd81e0869fac | 396:f26444eb0275 |
---|---|
159 length (i0 ∷ i0 ∷ x ∷ z) ≡⟨ refl ⟩ | 159 length (i0 ∷ i0 ∷ x ∷ z) ≡⟨ refl ⟩ |
160 suc (length (i0 ∷ i0 ∷ z)) ≡⟨ cong suc (nn16 z) ⟩ | 160 suc (length (i0 ∷ i0 ∷ z)) ≡⟨ cong suc (nn16 z) ⟩ |
161 suc (suc (suc (length (y (i0 ∷ z))))) ≡⟨ cong suc (cong suc ( cong suc (nn17 z))) ⟩ | 161 suc (suc (suc (length (y (i0 ∷ z))))) ≡⟨ cong suc (cong suc ( cong suc (nn17 z))) ⟩ |
162 suc (suc (suc (length (y (x ∷ z))))) ≡⟨ refl ⟩ | 162 suc (suc (suc (length (y (x ∷ z))))) ≡⟨ refl ⟩ |
163 suc (suc (length (i0 ∷ y (x ∷ z)))) ∎ where open ≡-Reasoning | 163 suc (suc (length (i0 ∷ y (x ∷ z)))) ∎ where open ≡-Reasoning |
164 nn11 : (t : List In2) → inputnn1-i1 (proj1 (inputnn1-i0 1 t)) (proj2 (inputnn1-i0 1 t)) ≡ true | 164 nn11 : (t : List In2) → inputnn1-i1 (proj1 (inputnn1-i0 0 t)) (proj2 (inputnn1-i0 0 t)) ≡ true |
165 → t ++ (i1 ∷ []) ≡ y t | 165 → top-is-i0 t ≡ true |
166 nn11 t eq = ? | 166 → y t ++ (i1 ∷ []) ≡ t |
167 nn11 [] eq ne = ? | |
168 nn11 (i0 ∷ t) eq ne = ? | |
169 nn11 (i1 ∷ []) eq ne = ? | |
170 nn11 (i1 ∷ i0 ∷ t) eq ne = ? | |
171 nn11 (i1 ∷ i1 ∷ t) eq ne = cong (i1 ∷_ ) (nn11 (i1 ∷ t) eq ? ) | |
167 nn10 : (y : List In2 ) | 172 nn10 : (y : List In2 ) |
168 → inputnn1-i1 (proj1 (inputnn1-i0 0 y)) (proj2 (inputnn1-i0 0 y)) ≡ true | 173 → inputnn1-i1 (proj1 (inputnn1-i0 0 y)) (proj2 (inputnn1-i0 0 y)) ≡ true |
169 → y ≡ input-addi0 (half y) (input-addi1 (half y)) | 174 → y ≡ input-addi0 (half y) (input-addi1 (half y)) |
170 nn10 y eq = nn08 y eq | 175 nn10 y eq = nn08 y eq |
171 nn14 : inputnn1-i1 (proj1 (inputnn1-i0 0 (y t))) (proj2 (inputnn1-i0 0 (y t))) ≡ true | 176 nn14 : inputnn1-i1 (proj1 (inputnn1-i0 0 (y t))) (proj2 (inputnn1-i0 0 (y t))) ≡ true |