Mercurial > hg > Members > kono > Proof > automaton
diff agda/regular-concat.agda @ 178:27dbee9c292c
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 17 Mar 2021 10:24:49 +0900 |
parents | 26407ce19d66 |
children |
line wrap: on
line diff
--- a/agda/regular-concat.agda Tue Mar 16 14:02:45 2021 +0900 +++ b/agda/regular-concat.agda Wed Mar 17 10:24:49 2021 +0900 @@ -153,8 +153,8 @@ abmove (case1 q) h = case1 (δ (automaton A) q h) abmove (case2 q) h = case2 (δ (automaton B) q h) lemma-nmove-ab : (q : states A ∨ states B) → (h : Σ ) → Nδ NFA q h (abmove q h) ≡ true - lemma-nmove-ab (case1 q) _ = equal?-refl (afin A) - lemma-nmove-ab (case2 q) _ = equal?-refl (afin B) + lemma-nmove-ab (case1 q) _ = ? -- equal?-refl (afin A) + lemma-nmove-ab (case2 q) _ = ? -- equal?-refl (afin B) nmove : (q : states A ∨ states B) (nq : states A ∨ states B → Bool ) → (nq q ≡ true) → ( h : Σ ) → exists finab (λ qn → nq qn /\ Nδ NFA qn h (abmove q h)) ≡ true nmove (case1 q) nq nqt h = found finab (case1 q) ( bool-and-tt nqt (lemma-nmove-ab (case1 q) h) ) @@ -180,7 +180,7 @@ acceptAB : Split (contain A) (contain B) x → Naccept NFA finab (equal? finab (case1 (astart A))) x ≡ true acceptAB S = subst ( λ k → Naccept NFA finab (equal? finab (case1 (astart A))) k ≡ true ) ( sp-concat S ) - (acceptA (sp0 S) (sp1 S) (astart A) (equal? finab (case1 (astart A))) (equal?-refl finab) (prop0 S) (prop1 S) ) + (acceptA (sp0 S) (sp1 S) (astart A) (equal? finab (case1 (astart A))) ? (prop0 S) (prop1 S) ) closed-in-concat→ : Concat (contain A) (contain B) x ≡ true → contain (M-Concat A B) x ≡ true closed-in-concat→ concat with split→AB (contain A) (contain B) x concat