Mercurial > hg > Members > kono > Proof > automaton
diff automaton-in-agda/src/finiteSetUtil.agda @ 183:3fa72793620b
fix
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 13 Jun 2021 20:45:17 +0900 |
parents | automaton-in-agda/src/agda/finiteSetUtil.agda@567754463810 |
children | d1e8e5eadc38 |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/automaton-in-agda/src/finiteSetUtil.agda Sun Jun 13 20:45:17 2021 +0900 @@ -0,0 +1,461 @@ +{-# OPTIONS --allow-unsolved-metas #-} + +module finiteSetUtil where + +open import Data.Nat hiding ( _≟_ ) +open import Data.Fin renaming ( _<_ to _<<_ ) hiding (_≤_) +open import Data.Fin.Properties +open import Data.Empty +open import Relation.Nullary +open import Relation.Binary.Definitions +open import Relation.Binary.PropositionalEquality +open import logic +open import nat +open import finiteSet +open import fin +open import Data.Nat.Properties as NatP hiding ( _≟_ ) +open import Relation.Binary.HeterogeneousEquality as HE using (_≅_ ) + +record Found ( Q : Set ) (p : Q → Bool ) : Set where + field + found-q : Q + found-p : p found-q ≡ true + +module _ {Q : Set } (F : FiniteSet Q) where + open FiniteSet F + equal→refl : { x y : Q } → equal? x y ≡ true → x ≡ y + equal→refl {q0} {q1} eq with F←Q q0 ≟ F←Q q1 + equal→refl {q0} {q1} refl | yes eq = begin + q0 + ≡⟨ sym ( finiso→ q0) ⟩ + Q←F (F←Q q0) + ≡⟨ cong (λ k → Q←F k ) eq ⟩ + Q←F (F←Q q1) + ≡⟨ finiso→ q1 ⟩ + q1 + ∎ where open ≡-Reasoning + End : (m : ℕ ) → (p : Q → Bool ) → Set + End m p = (i : Fin finite) → m ≤ toℕ i → p (Q←F i ) ≡ false + first-end : ( p : Q → Bool ) → End finite p + first-end p i i>n = ⊥-elim (nat-≤> i>n (fin<n {finite} {i}) ) + next-end : {m : ℕ } → ( p : Q → Bool ) → End (suc m) p + → (m<n : m < finite ) → p (Q←F (fromℕ< m<n )) ≡ false + → End m p + next-end {m} p prev m<n np i m<i with NatP.<-cmp m (toℕ i) + next-end p prev m<n np i m<i | tri< a ¬b ¬c = prev i a + next-end p prev m<n np i m<i | tri> ¬a ¬b c = ⊥-elim ( nat-≤> m<i c ) + next-end {m} p prev m<n np i m<i | tri≈ ¬a b ¬c = subst ( λ k → p (Q←F k) ≡ false) (m<n=i i b m<n ) np where + m<n=i : {n : ℕ } (i : Fin n) {m : ℕ } → m ≡ (toℕ i) → (m<n : m < n ) → fromℕ< m<n ≡ i + m<n=i i eq m<n = {!!} -- toℕ-inject (fromℕ≤ ?) i (subst (λ k → k ≡ toℕ i) (sym (toℕ-fromℕ≤ m<n)) eq ) + found : { p : Q → Bool } → (q : Q ) → p q ≡ true → exists p ≡ true + found {p} q pt = found1 finite (NatP.≤-refl ) ( first-end p ) where + found1 : (m : ℕ ) (m<n : m Data.Nat.≤ finite ) → ((i : Fin finite) → m ≤ toℕ i → p (Q←F i ) ≡ false ) → exists1 m m<n p ≡ true + found1 0 m<n end = ⊥-elim ( ¬-bool (subst (λ k → k ≡ false ) (cong (λ k → p k) (finiso→ q) ) (end (F←Q q) z≤n )) pt ) + found1 (suc m) m<n end with bool-≡-? (p (Q←F (fromℕ< m<n))) true + found1 (suc m) m<n end | yes eq = subst (λ k → k \/ exists1 m (≤to< m<n) p ≡ true ) (sym eq) (bool-or-4 {exists1 m (≤to< m<n) p} ) + found1 (suc m) m<n end | no np = begin + p (Q←F (fromℕ< m<n)) \/ exists1 m (≤to< m<n) p + ≡⟨ bool-or-1 (¬-bool-t np ) ⟩ + exists1 m (≤to< m<n) p + ≡⟨ found1 m (≤to< m<n) (next-end p end m<n (¬-bool-t np )) ⟩ + true + ∎ where open ≡-Reasoning + + + +record ISO (A B : Set) : Set where + field + A←B : B → A + B←A : A → B + iso← : (q : A) → A←B ( B←A q ) ≡ q + iso→ : (f : B) → B←A ( A←B f ) ≡ f + +iso-fin : {A B : Set} → FiniteSet A → ISO A B → FiniteSet B +iso-fin {A} {B} fin iso = record { + Q←F = λ f → ISO.B←A iso ( FiniteSet.Q←F fin f ) + ; F←Q = λ b → FiniteSet.F←Q fin ( ISO.A←B iso b ) + ; finiso→ = finiso→ + ; finiso← = finiso← + } where + finiso→ : (q : B) → ISO.B←A iso (FiniteSet.Q←F fin (FiniteSet.F←Q fin (ISO.A←B iso q))) ≡ q + finiso→ q = begin + ISO.B←A iso (FiniteSet.Q←F fin (FiniteSet.F←Q fin (ISO.A←B iso q))) + ≡⟨ cong (λ k → ISO.B←A iso k ) (FiniteSet.finiso→ fin _ ) ⟩ + ISO.B←A iso (ISO.A←B iso q) + ≡⟨ ISO.iso→ iso _ ⟩ + q + ∎ where + open ≡-Reasoning + finiso← : (f : Fin (FiniteSet.finite fin ))→ FiniteSet.F←Q fin (ISO.A←B iso (ISO.B←A iso (FiniteSet.Q←F fin f))) ≡ f + finiso← f = begin + FiniteSet.F←Q fin (ISO.A←B iso (ISO.B←A iso (FiniteSet.Q←F fin f))) + ≡⟨ cong (λ k → FiniteSet.F←Q fin k ) (ISO.iso← iso _) ⟩ + FiniteSet.F←Q fin (FiniteSet.Q←F fin f) + ≡⟨ FiniteSet.finiso← fin _ ⟩ + f + ∎ where + open ≡-Reasoning + +data One : Set where + one : One + +fin-∨1 : {B : Set} → (fb : FiniteSet B ) → FiniteSet (One ∨ B) +fin-∨1 {B} fb = record { + Q←F = Q←F + ; F←Q = F←Q + ; finiso→ = finiso→ + ; finiso← = finiso← + } where + b = FiniteSet.finite fb + Q←F : Fin (suc b) → One ∨ B + Q←F zero = case1 one + Q←F (suc f) = case2 (FiniteSet.Q←F fb f) + F←Q : One ∨ B → Fin (suc b) + F←Q (case1 one) = zero + F←Q (case2 f ) = suc (FiniteSet.F←Q fb f) + finiso→ : (q : One ∨ B) → Q←F (F←Q q) ≡ q + finiso→ (case1 one) = refl + finiso→ (case2 b) = cong (λ k → case2 k ) (FiniteSet.finiso→ fb b) + finiso← : (q : Fin (suc b)) → F←Q (Q←F q) ≡ q + finiso← zero = refl + finiso← (suc f) = cong ( λ k → suc k ) (FiniteSet.finiso← fb f) + + +fin-∨2 : {B : Set} → ( a : ℕ ) → FiniteSet B → FiniteSet (Fin a ∨ B) +fin-∨2 {B} zero fb = iso-fin fb iso where + iso : ISO B (Fin zero ∨ B) + iso = record { + A←B = A←B + ; B←A = λ b → case2 b + ; iso→ = iso→ + ; iso← = λ _ → refl + } where + A←B : Fin zero ∨ B → B + A←B (case2 x) = x + iso→ : (f : Fin zero ∨ B ) → case2 (A←B f) ≡ f + iso→ (case2 x) = refl +fin-∨2 {B} (suc a) fb = iso-fin (fin-∨1 (fin-∨2 a fb) ) iso + where + iso : ISO (One ∨ (Fin a ∨ B) ) (Fin (suc a) ∨ B) + ISO.A←B iso (case1 zero) = case1 one + ISO.A←B iso (case1 (suc f)) = case2 (case1 f) + ISO.A←B iso (case2 b) = case2 (case2 b) + ISO.B←A iso (case1 one) = case1 zero + ISO.B←A iso (case2 (case1 f)) = case1 (suc f) + ISO.B←A iso (case2 (case2 b)) = case2 b + ISO.iso← iso (case1 one) = refl + ISO.iso← iso (case2 (case1 x)) = refl + ISO.iso← iso (case2 (case2 x)) = refl + ISO.iso→ iso (case1 zero) = refl + ISO.iso→ iso (case1 (suc x)) = refl + ISO.iso→ iso (case2 x) = refl + + +FiniteSet→Fin : {A : Set} → (fin : FiniteSet A ) → ISO (Fin (FiniteSet.finite fin)) A +ISO.A←B (FiniteSet→Fin fin) f = FiniteSet.F←Q fin f +ISO.B←A (FiniteSet→Fin fin) f = FiniteSet.Q←F fin f +ISO.iso← (FiniteSet→Fin fin) = FiniteSet.finiso← fin +ISO.iso→ (FiniteSet→Fin fin) = FiniteSet.finiso→ fin + + +fin-∨ : {A B : Set} → FiniteSet A → FiniteSet B → FiniteSet (A ∨ B) +fin-∨ {A} {B} fa fb = iso-fin (fin-∨2 a fb ) iso2 where + a = FiniteSet.finite fa + ia = FiniteSet→Fin fa + iso2 : ISO (Fin a ∨ B ) (A ∨ B) + ISO.A←B iso2 (case1 x) = case1 ( ISO.A←B ia x ) + ISO.A←B iso2 (case2 x) = case2 x + ISO.B←A iso2 (case1 x) = case1 ( ISO.B←A ia x ) + ISO.B←A iso2 (case2 x) = case2 x + ISO.iso← iso2 (case1 x) = cong ( λ k → case1 k ) (ISO.iso← ia x) + ISO.iso← iso2 (case2 x) = refl + ISO.iso→ iso2 (case1 x) = cong ( λ k → case1 k ) (ISO.iso→ ia x) + ISO.iso→ iso2 (case2 x) = refl + +open import Data.Product + +fin-× : {A B : Set} → FiniteSet A → FiniteSet B → FiniteSet (A × B) +fin-× {A} {B} fa fb with FiniteSet→Fin fa +... | a=f = iso-fin (fin-×-f a ) iso-1 where + a = FiniteSet.finite fa + b = FiniteSet.finite fb + iso-1 : ISO (Fin a × B) ( A × B ) + ISO.A←B iso-1 x = ( FiniteSet.F←Q fa (proj₁ x) , proj₂ x) + ISO.B←A iso-1 x = ( FiniteSet.Q←F fa (proj₁ x) , proj₂ x) + ISO.iso← iso-1 x = lemma where + lemma : (FiniteSet.F←Q fa (FiniteSet.Q←F fa (proj₁ x)) , proj₂ x) ≡ ( proj₁ x , proj₂ x ) + lemma = cong ( λ k → ( k , proj₂ x ) ) (FiniteSet.finiso← fa _ ) + ISO.iso→ iso-1 x = cong ( λ k → ( k , proj₂ x ) ) (FiniteSet.finiso→ fa _ ) + + iso-2 : {a : ℕ } → ISO (B ∨ (Fin a × B)) (Fin (suc a) × B) + ISO.A←B iso-2 (zero , b ) = case1 b + ISO.A←B iso-2 (suc fst , b ) = case2 ( fst , b ) + ISO.B←A iso-2 (case1 b) = ( zero , b ) + ISO.B←A iso-2 (case2 (a , b )) = ( suc a , b ) + ISO.iso← iso-2 (case1 x) = refl + ISO.iso← iso-2 (case2 x) = refl + ISO.iso→ iso-2 (zero , b ) = refl + ISO.iso→ iso-2 (suc a , b ) = refl + + fin-×-f : ( a : ℕ ) → FiniteSet ((Fin a) × B) + fin-×-f zero = record { Q←F = λ () ; F←Q = λ () ; finiso→ = λ () ; finiso← = λ () ; finite = 0 } + fin-×-f (suc a) = iso-fin ( fin-∨ fb ( fin-×-f a ) ) iso-2 + +open _∧_ + +fin-∧ : {A B : Set} → FiniteSet A → FiniteSet B → FiniteSet (A ∧ B) +fin-∧ {A} {B} fa fb with FiniteSet→Fin fa -- same thing for our tool +... | a=f = iso-fin (fin-×-f a ) iso-1 where + a = FiniteSet.finite fa + b = FiniteSet.finite fb + iso-1 : ISO (Fin a ∧ B) ( A ∧ B ) + ISO.A←B iso-1 x = record { proj1 = FiniteSet.F←Q fa (proj1 x) ; proj2 = proj2 x} + ISO.B←A iso-1 x = record { proj1 = FiniteSet.Q←F fa (proj1 x) ; proj2 = proj2 x} + ISO.iso← iso-1 x = lemma where + lemma : record { proj1 = FiniteSet.F←Q fa (FiniteSet.Q←F fa (proj1 x)) ; proj2 = proj2 x} ≡ record {proj1 = proj1 x ; proj2 = proj2 x } + lemma = cong ( λ k → record {proj1 = k ; proj2 = proj2 x } ) (FiniteSet.finiso← fa _ ) + ISO.iso→ iso-1 x = cong ( λ k → record {proj1 = k ; proj2 = proj2 x } ) (FiniteSet.finiso→ fa _ ) + + iso-2 : {a : ℕ } → ISO (B ∨ (Fin a ∧ B)) (Fin (suc a) ∧ B) + ISO.A←B iso-2 (record { proj1 = zero ; proj2 = b }) = case1 b + ISO.A←B iso-2 (record { proj1 = suc fst ; proj2 = b }) = case2 ( record { proj1 = fst ; proj2 = b } ) + ISO.B←A iso-2 (case1 b) = record {proj1 = zero ; proj2 = b } + ISO.B←A iso-2 (case2 (record { proj1 = a ; proj2 = b })) = record { proj1 = suc a ; proj2 = b } + ISO.iso← iso-2 (case1 x) = refl + ISO.iso← iso-2 (case2 x) = refl + ISO.iso→ iso-2 (record { proj1 = zero ; proj2 = b }) = refl + ISO.iso→ iso-2 (record { proj1 = suc a ; proj2 = b }) = refl + + fin-×-f : ( a : ℕ ) → FiniteSet ((Fin a) ∧ B) + fin-×-f zero = record { Q←F = λ () ; F←Q = λ () ; finiso→ = λ () ; finiso← = λ () ; finite = 0 } + fin-×-f (suc a) = iso-fin ( fin-∨ fb ( fin-×-f a ) ) iso-2 + +-- import Data.Nat.DivMod + +open import Data.Vec +import Data.Product + +exp2 : (n : ℕ ) → exp 2 (suc n) ≡ exp 2 n Data.Nat.+ exp 2 n +exp2 n = begin + exp 2 (suc n) + ≡⟨⟩ + 2 * ( exp 2 n ) + ≡⟨ *-comm 2 (exp 2 n) ⟩ + ( exp 2 n ) * 2 + ≡⟨ *-suc ( exp 2 n ) 1 ⟩ + (exp 2 n ) Data.Nat.+ ( exp 2 n ) * 1 + ≡⟨ cong ( λ k → (exp 2 n ) Data.Nat.+ k ) (proj₂ *-identity (exp 2 n) ) ⟩ + exp 2 n Data.Nat.+ exp 2 n + ∎ where + open ≡-Reasoning + open Data.Product + +cast-iso : {n m : ℕ } → (eq : n ≡ m ) → (f : Fin m ) → cast eq ( cast (sym eq ) f) ≡ f +cast-iso refl zero = refl +cast-iso refl (suc f) = cong ( λ k → suc k ) ( cast-iso refl f ) + + +fin2List : {n : ℕ } → FiniteSet (Vec Bool n) +fin2List {zero} = record { + Q←F = λ _ → Vec.[] + ; F←Q = λ _ → # 0 + ; finiso→ = finiso→ + ; finiso← = finiso← + } where + Q = Vec Bool zero + finiso→ : (q : Q) → [] ≡ q + finiso→ [] = refl + finiso← : (f : Fin (exp 2 zero)) → # 0 ≡ f + finiso← zero = refl +fin2List {suc n} = subst (λ k → FiniteSet (Vec Bool (suc n)) ) (sym (exp2 n)) ( iso-fin (fin-∨ (fin2List ) (fin2List )) iso ) + where + QtoR : Vec Bool (suc n) → Vec Bool n ∨ Vec Bool n + QtoR ( true ∷ x ) = case1 x + QtoR ( false ∷ x ) = case2 x + RtoQ : Vec Bool n ∨ Vec Bool n → Vec Bool (suc n) + RtoQ ( case1 x ) = true ∷ x + RtoQ ( case2 x ) = false ∷ x + isoRQ : (x : Vec Bool (suc n) ) → RtoQ ( QtoR x ) ≡ x + isoRQ (true ∷ _ ) = refl + isoRQ (false ∷ _ ) = refl + isoQR : (x : Vec Bool n ∨ Vec Bool n ) → QtoR ( RtoQ x ) ≡ x + isoQR (case1 x) = refl + isoQR (case2 x) = refl + iso : ISO (Vec Bool n ∨ Vec Bool n) (Vec Bool (suc n)) + iso = record { A←B = QtoR ; B←A = RtoQ ; iso← = isoQR ; iso→ = isoRQ } + +F2L : {Q : Set } {n : ℕ } → (fin : FiniteSet Q ) → n < suc (FiniteSet.finite fin) → ( (q : Q) → toℕ (FiniteSet.F←Q fin q ) < n → Bool ) → Vec Bool n +F2L {Q} {zero} fin _ Q→B = [] +F2L {Q} {suc n} fin (s≤s n<m) Q→B = Q→B (FiniteSet.Q←F fin (fromℕ< n<m)) lemma6 ∷ F2L {Q} fin (NatP.<-trans n<m a<sa ) qb1 where + lemma6 : toℕ (FiniteSet.F←Q fin (FiniteSet.Q←F fin (fromℕ< n<m))) < suc n + lemma6 = subst (λ k → toℕ k < suc n ) (sym (FiniteSet.finiso← fin _ )) (subst (λ k → k < suc n) (sym (toℕ-fromℕ< n<m )) a<sa ) + qb1 : (q : Q) → toℕ (FiniteSet.F←Q fin q) < n → Bool + qb1 q q<n = Q→B q (NatP.<-trans q<n a<sa) + +List2Func : { Q : Set } → {n : ℕ } → (fin : FiniteSet Q ) → n < suc (FiniteSet.finite fin) → Vec Bool n → Q → Bool +List2Func {Q} {zero} fin (s≤s z≤n) [] q = false +List2Func {Q} {suc n} fin (s≤s n<m) (h ∷ t) q with FiniteSet.F←Q fin q ≟ fromℕ< n<m +... | yes _ = h +... | no _ = List2Func {Q} fin (NatP.<-trans n<m a<sa ) t q + +open import Level renaming ( suc to Suc ; zero to Zero) +open import Axiom.Extensionality.Propositional +postulate f-extensionality : { n : Level} → Axiom.Extensionality.Propositional.Extensionality n n + +F2L-iso : { Q : Set } → (fin : FiniteSet Q ) → (x : Vec Bool (FiniteSet.finite fin) ) → F2L fin a<sa (λ q _ → List2Func fin a<sa x q ) ≡ x +F2L-iso {Q} fin x = f2l m a<sa x where + m = FiniteSet.finite fin + f2l : (n : ℕ ) → (n<m : n < suc m )→ (x : Vec Bool n ) → F2L fin n<m (λ q q<n → List2Func fin n<m x q ) ≡ x + f2l zero (s≤s z≤n) [] = refl + f2l (suc n) (s≤s n<m) (h ∷ t ) = lemma1 lemma2 lemma3f where + lemma1 : {n : ℕ } → {h h1 : Bool } → {t t1 : Vec Bool n } → h ≡ h1 → t ≡ t1 → h ∷ t ≡ h1 ∷ t1 + lemma1 refl refl = refl + lemma2 : List2Func fin (s≤s n<m) (h ∷ t) (FiniteSet.Q←F fin (fromℕ< n<m)) ≡ h + lemma2 with FiniteSet.F←Q fin (FiniteSet.Q←F fin (fromℕ< n<m)) ≟ fromℕ< n<m + lemma2 | yes p = refl + lemma2 | no ¬p = ⊥-elim ( ¬p (FiniteSet.finiso← fin _) ) + lemma4 : (q : Q ) → toℕ (FiniteSet.F←Q fin q ) < n → List2Func fin (s≤s n<m) (h ∷ t) q ≡ List2Func fin (NatP.<-trans n<m a<sa) t q + lemma4 q _ with FiniteSet.F←Q fin q ≟ fromℕ< n<m + lemma4 q lt | yes p = ⊥-elim ( nat-≡< (toℕ-fromℕ< n<m) (lemma5 n lt (cong (λ k → toℕ k) p))) where + lemma5 : {j k : ℕ } → ( n : ℕ) → suc j ≤ n → j ≡ k → k < n + lemma5 {zero} (suc n) (s≤s z≤n) refl = s≤s z≤n + lemma5 {suc j} (suc n) (s≤s lt) refl = s≤s (lemma5 {j} n lt refl) + lemma4 q _ | no ¬p = refl + lemma3f : F2L fin (NatP.<-trans n<m a<sa) (λ q q<n → List2Func fin (s≤s n<m) (h ∷ t) q ) ≡ t + lemma3f = begin + F2L fin (NatP.<-trans n<m a<sa) (λ q q<n → List2Func fin (s≤s n<m) (h ∷ t) q ) + ≡⟨ cong (λ k → F2L fin (NatP.<-trans n<m a<sa) ( λ q q<n → k q q<n )) + (f-extensionality ( λ q → + (f-extensionality ( λ q<n → lemma4 q q<n )))) ⟩ + F2L fin (NatP.<-trans n<m a<sa) (λ q q<n → List2Func fin (NatP.<-trans n<m a<sa) t q ) + ≡⟨ f2l n (NatP.<-trans n<m a<sa ) t ⟩ + t + ∎ where + open ≡-Reasoning + + +L2F : {Q : Set } {n : ℕ } → (fin : FiniteSet Q ) → n < suc (FiniteSet.finite fin) → Vec Bool n → (q : Q ) → toℕ (FiniteSet.F←Q fin q ) < n → Bool +L2F fin n<m x q q<n = List2Func fin n<m x q + +L2F-iso : { Q : Set } → (fin : FiniteSet Q ) → (f : Q → Bool ) → (q : Q ) → (L2F fin a<sa (F2L fin a<sa (λ q _ → f q) )) q (toℕ<n _) ≡ f q +L2F-iso {Q} fin f q = l2f m a<sa (toℕ<n _) where + m = FiniteSet.finite fin + lemma11f : {n : ℕ } → (n<m : n < m ) → ¬ ( FiniteSet.F←Q fin q ≡ fromℕ< n<m ) → toℕ (FiniteSet.F←Q fin q) ≤ n → toℕ (FiniteSet.F←Q fin q) < n + lemma11f n<m ¬q=n q≤n = lemma13 n<m (contra-position (lemma12 n<m _) ¬q=n ) q≤n where + lemma13 : {n nq : ℕ } → (n<m : n < m ) → ¬ ( nq ≡ n ) → nq ≤ n → nq < n + lemma13 {0} {0} (s≤s z≤n) nt z≤n = ⊥-elim ( nt refl ) + lemma13 {suc _} {0} (s≤s (s≤s n<m)) nt z≤n = s≤s z≤n + lemma13 {suc n} {suc nq} n<m nt (s≤s nq≤n) = s≤s (lemma13 {n} {nq} (NatP.<-trans a<sa n<m ) (λ eq → nt ( cong ( λ k → suc k ) eq )) nq≤n) + lemma3f : {a b : ℕ } → (lt : a < b ) → fromℕ< (s≤s lt) ≡ suc (fromℕ< lt) + lemma3f (s≤s lt) = refl + lemma12f : {n m : ℕ } → (n<m : n < m ) → (f : Fin m ) → toℕ f ≡ n → f ≡ fromℕ< n<m + lemma12f {zero} {suc m} (s≤s z≤n) zero refl = refl + lemma12f {suc n} {suc m} (s≤s n<m) (suc f) refl = subst ( λ k → suc f ≡ k ) (sym (lemma3f n<m) ) ( cong ( λ k → suc k ) ( lemma12f {n} {m} n<m f refl ) ) + l2f : (n : ℕ ) → (n<m : n < suc m ) → (q<n : toℕ (FiniteSet.F←Q fin q ) < n ) → (L2F fin n<m (F2L fin n<m (λ q _ → f q))) q q<n ≡ f q + l2f zero (s≤s z≤n) () + l2f (suc n) (s≤s n<m) (s≤s n<q) with FiniteSet.F←Q fin q ≟ fromℕ< n<m + l2f (suc n) (s≤s n<m) (s≤s n<q) | yes p = begin + f (FiniteSet.Q←F fin (fromℕ< n<m)) + ≡⟨ cong ( λ k → f (FiniteSet.Q←F fin k )) (sym p) ⟩ + f (FiniteSet.Q←F fin ( FiniteSet.F←Q fin q )) + ≡⟨ cong ( λ k → f k ) (FiniteSet.finiso→ fin _ ) ⟩ + f q + ∎ where + open ≡-Reasoning + l2f (suc n) (s≤s n<m) (s≤s n<q) | no ¬p = l2f n (NatP.<-trans n<m a<sa) (lemma11f n<m ¬p n<q) + +fin→ : {A : Set} → FiniteSet A → FiniteSet (A → Bool ) +fin→ {A} fin = iso-fin fin2List iso where + a = FiniteSet.finite fin + iso : ISO (Vec Bool a ) (A → Bool) + ISO.A←B iso x = F2L fin a<sa ( λ q _ → x q ) + ISO.B←A iso x = List2Func fin a<sa x + ISO.iso← iso x = F2L-iso fin x + ISO.iso→ iso x = lemma where + lemma : List2Func fin a<sa (F2L fin a<sa (λ q _ → x q)) ≡ x + lemma = f-extensionality ( λ q → L2F-iso fin x q ) + + +Fin2Finite : ( n : ℕ ) → FiniteSet (Fin n) +Fin2Finite n = record { F←Q = λ x → x ; Q←F = λ x → x ; finiso← = λ q → refl ; finiso→ = λ q → refl } + +data fin-less { n : ℕ } { A : Set } (fa : FiniteSet A ) (n<m : n < FiniteSet.finite fa ) : Set where + elm1 : (elm : A ) → toℕ (FiniteSet.F←Q fa elm ) < n → fin-less fa n<m + +get-elm : { n : ℕ } { A : Set } {fa : FiniteSet A } {n<m : n < FiniteSet.finite fa } → fin-less fa n<m → A +get-elm (elm1 a _ ) = a + +get-< : { n : ℕ } { A : Set } {fa : FiniteSet A } {n<m : n < FiniteSet.finite fa }→ (f : fin-less fa n<m ) → toℕ (FiniteSet.F←Q fa (get-elm f )) < n +get-< (elm1 _ b ) = b + +fin-less-cong : { n : ℕ } { A : Set } (fa : FiniteSet A ) (n<m : n < FiniteSet.finite fa ) + → (x y : fin-less fa n<m ) → get-elm {n} {A} {fa} x ≡ get-elm {n} {A} {fa} y → get-< x ≅ get-< y → x ≡ y +fin-less-cong fa n<m (elm1 elm x) (elm1 elm x) refl HE.refl = refl + +fin-< : {A : Set} → { n : ℕ } → (fa : FiniteSet A ) → (n<m : n < FiniteSet.finite fa ) → FiniteSet (fin-less fa n<m ) +fin-< {A} {n} fa n<m = iso-fin (Fin2Finite n) iso where + m = FiniteSet.finite fa + iso : ISO (Fin n) (fin-less fa n<m ) + lemma8f : {i j n : ℕ } → ( i ≡ j ) → {i<n : i < n } → {j<n : j < n } → i<n ≅ j<n + lemma8f {zero} {zero} {suc n} refl {s≤s z≤n} {s≤s z≤n} = HE.refl + lemma8f {suc i} {suc i} {suc n} refl {s≤s i<n} {s≤s j<n} = HE.cong (λ k → s≤s k ) ( lemma8f {i} {i} refl ) + lemma10f : {n i j : ℕ } → ( i ≡ j ) → {i<n : i < n } → {j<n : j < n } → fromℕ< i<n ≡ fromℕ< j<n + lemma10f refl = HE.≅-to-≡ (HE.cong (λ k → fromℕ< k ) (lemma8f refl )) + lemma3f : {a b c : ℕ } → { a<b : a < b } { b<c : b < c } { a<c : a < c } → NatP.<-trans a<b b<c ≡ a<c + lemma3f {a} {b} {c} {a<b} {b<c} {a<c} = HE.≅-to-≡ (lemma8f refl) + lemma11f : {n : ℕ } {x : Fin n } → (n<m : n < m ) → toℕ (fromℕ< (NatP.<-trans (toℕ<n x) n<m)) ≡ toℕ x + lemma11f {n} {x} n<m = begin + toℕ (fromℕ< (NatP.<-trans (toℕ<n x) n<m)) + ≡⟨ toℕ-fromℕ< _ ⟩ + toℕ x + ∎ where + open ≡-Reasoning + ISO.A←B iso (elm1 elm x) = fromℕ< x + ISO.B←A iso x = elm1 (FiniteSet.Q←F fa (fromℕ< (NatP.<-trans x<n n<m ))) to<n where + x<n : toℕ x < n + x<n = toℕ<n x + to<n : toℕ (FiniteSet.F←Q fa (FiniteSet.Q←F fa (fromℕ< (NatP.<-trans x<n n<m)))) < n + to<n = subst (λ k → toℕ k < n ) (sym (FiniteSet.finiso← fa _ )) (subst (λ k → k < n ) (sym ( toℕ-fromℕ< (NatP.<-trans x<n n<m) )) x<n ) + ISO.iso← iso x = lemma2 where + lemma2 : fromℕ< (subst (λ k → toℕ k < n) (sym + (FiniteSet.finiso← fa (fromℕ< (NatP.<-trans (toℕ<n x) n<m)))) (subst (λ k → k < n) + (sym (toℕ-fromℕ< (NatP.<-trans (toℕ<n x) n<m))) (toℕ<n x))) ≡ x + lemma2 = begin + fromℕ< (subst (λ k → toℕ k < n) (sym + (FiniteSet.finiso← fa (fromℕ< (NatP.<-trans (toℕ<n x) n<m)))) (subst (λ k → k < n) + (sym (toℕ-fromℕ< (NatP.<-trans (toℕ<n x) n<m))) (toℕ<n x))) + ≡⟨⟩ + fromℕ< ( subst (λ k → toℕ ( k ) < n ) (sym (FiniteSet.finiso← fa _ )) lemma6 ) + ≡⟨ lemma10 (cong (λ k → toℕ k) (FiniteSet.finiso← fa _ ) ) ⟩ + fromℕ< lemma6 + ≡⟨ lemma10 (lemma11 n<m ) ⟩ + fromℕ< ( toℕ<n x ) + ≡⟨ fromℕ<-toℕ _ _ ⟩ + x + ∎ where + open ≡-Reasoning + lemma6 : toℕ (fromℕ< (NatP.<-trans (toℕ<n x) n<m)) < n + lemma6 = subst ( λ k → k < n ) (sym (toℕ-fromℕ< (NatP.<-trans (toℕ<n x) n<m))) (toℕ<n x ) + ISO.iso→ iso (elm1 elm x) = fin-less-cong fa n<m _ _ lemma (lemma8 (cong (λ k → toℕ (FiniteSet.F←Q fa k) ) lemma ) ) where + lemma13 : toℕ (fromℕ< x) ≡ toℕ (FiniteSet.F←Q fa elm) + lemma13 = begin + toℕ (fromℕ< x) + ≡⟨ toℕ-fromℕ< _ ⟩ + toℕ (FiniteSet.F←Q fa elm) + ∎ where open ≡-Reasoning + lemma : FiniteSet.Q←F fa (fromℕ< (NatP.<-trans (toℕ<n (ISO.A←B iso (elm1 elm x))) n<m)) ≡ elm + lemma = begin + FiniteSet.Q←F fa (fromℕ< (NatP.<-trans (toℕ<n (ISO.A←B iso (elm1 elm x))) n<m)) + ≡⟨⟩ + FiniteSet.Q←F fa (fromℕ< ( NatP.<-trans (toℕ<n ( fromℕ< x ) ) n<m)) + ≡⟨ cong (λ k → FiniteSet.Q←F fa k) (lemma10 lemma13 ) ⟩ + FiniteSet.Q←F fa (fromℕ< ( NatP.<-trans x n<m)) + ≡⟨ cong (λ k → FiniteSet.Q←F fa (fromℕ< k )) {!!} ⟩ + FiniteSet.Q←F fa (fromℕ< ( toℕ<n (FiniteSet.F←Q fa elm))) + ≡⟨ cong (λ k → FiniteSet.Q←F fa k ) ( fromℕ<-toℕ _ _ ) ⟩ + FiniteSet.Q←F fa (FiniteSet.F←Q fa elm ) + ≡⟨ FiniteSet.finiso→ fa _ ⟩ + elm + ∎ where open ≡-Reasoning + +