Mercurial > hg > Members > kono > Proof > automaton
diff automaton-in-agda/src/finiteSetUtil.agda @ 346:4456eebbd1bc
copying countable bijection may not easy
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 17 Jul 2023 11:00:19 +0900 (2023-07-17) |
parents | bcf3ca6ba87b |
children |
line wrap: on
line diff
--- a/automaton-in-agda/src/finiteSetUtil.agda Mon Jul 17 08:14:57 2023 +0900 +++ b/automaton-in-agda/src/finiteSetUtil.agda Mon Jul 17 11:00:19 2023 +0900 @@ -3,8 +3,8 @@ module finiteSetUtil where open import Data.Nat hiding ( _≟_ ) -open import Data.Fin renaming ( _<_ to _<<_ ; _>_ to _f>_ ; _≟_ to _f≟_ ) hiding (_≤_ ) -open import Data.Fin.Properties hiding ( <-trans ) renaming ( <-cmp to <-fcmp ) +open import Data.Fin renaming ( _<_ to _<<_ ; _>_ to _f>_ ; _≟_ to _f≟_ ) hiding (_≤_ ; pred ) +open import Data.Fin.Properties hiding ( <-trans ) renaming ( <-cmp to <-fcmp ) hiding (≤-refl ; ≤-trans ) open import Data.Empty open import Relation.Nullary open import Relation.Binary.Definitions @@ -572,44 +572,190 @@ open import bijection using ( InjectiveF ; Is ) -record countB (B : Set) : Set where - field - cb : ℕ - ib : {i : ℕ} → i < cb → B - ib-inject : {i j : ℕ} → (i<cb : i < cb) → (j<cb : j < cb) → ib i<cb ≡ ib j<cb → i ≡ j - inject-fin : {A B : Set} (fa : FiniteSet A ) - → (fi : InjectiveF B A) - → (is-B : (a : A ) → Dec (Is B A (InjectiveF.f fi) a) ) + → (gi : InjectiveF B A) + → (is-B : (a : A ) → Dec (Is B A (InjectiveF.f gi) a) ) → FiniteSet B -inject-fin {A} {B} fa fi is-B = record { - finite = countB.cb (cb00 (finite fa) NP.≤-refl ) - ; Q←F = λ fb → countB.ib (cb00 (finite fa) NP.≤-refl ) (fin<n {_} {fb}) - ; F←Q = λ b → fromℕ< (cb<cb (fin<n {_} {F←Q fa (InjectiveF.f fi b)} )) +inject-fin {A} {B} fa gi is-B with finite fa | inspect finite fa +inject-fin {A} {B} fa gi is-B | zero | record { eq = eq1 } = ? +inject-fin {A} {B} fa gi is-B | suc pfa | record { eq = eq1 } = record { + finite = maxb + ; Q←F = λ fb → ntob (toℕ fb) fin<n + ; F←Q = λ b → fromℕ< (bton<maxb b) ; finiso→ = ? ; finiso← = ? } where - f = InjectiveF.f fi - cb00 : (i : ℕ) → i ≤ finite fa → countB B - cb00 0 i<fa = record { cb = 0 ; ib = λ () ; ib-inject = λ () } - cb00 (suc i) i<fa with is-B (Q←F fa (fromℕ< i<fa)) - ... | yes y = record { cb = suc (countB.cb (cb00 i (NP.≤-trans a≤sa i<fa))) ; ib = cb01 ; ib-inject = cb02 } where - pcb : countB B - pcb = cb00 i (NP.≤-trans a≤sa i<fa) - cb01 : {j : ℕ} → j < suc (countB.cb (cb00 i (NP.≤-trans a≤sa i<fa))) → B - cb01 {j} j<c with <-∨ j<c - ... | case1 eq = Is.a y - ... | case2 lt = countB.ib (cb00 i (NP.≤-trans a≤sa i<fa)) lt - cb02 : {i1 : ℕ} {j : ℕ} - (i<cb : i1 < suc (countB.cb (cb00 i (NP.≤-trans a≤sa i<fa)))) - (j<cb : j < suc (countB.cb (cb00 i (NP.≤-trans a≤sa i<fa)))) → - cb01 i<cb ≡ cb01 j<cb → i1 ≡ j - cb02 = ? - ... | no n = record { cb = countB.cb (cb00 i (NP.≤-trans a≤sa i<fa)) ; ib = cb01 - ; ib-inject = countB.ib-inject (cb00 i (NP.≤-trans a≤sa i<fa))} where - cb01 : {j : ℕ} → j < countB.cb (cb00 i (NP.≤-trans a≤sa i<fa)) → B - cb01 {j} j<c = countB.ib (cb00 i (NP.≤-trans a≤sa i<fa)) j<c + g = InjectiveF.f gi + pfa<fa : pfa < finite fa + pfa<fa = subst (λ k → pfa < k ) (sym eq1) a<sa + h : ℕ → A + h i with <-cmp i (finite fa) + ... | tri< a ¬b ¬c = Q←F fa (fromℕ< a ) + ... | tri≈ ¬a b ¬c = Q←F fa (fromℕ< pfa<fa ) + ... | tri> ¬a ¬b c = Q←F fa (fromℕ< pfa<fa ) + C = A + h⁻¹ : A → ℕ + h⁻¹ a = toℕ (F←Q fa a) + + h-iso : (i : ℕ) → i < finite fa → h⁻¹ (h i) ≡ i + h-iso = ? + + count-B : ℕ → ℕ + count-B zero with is-B (h zero) + ... | yes isb = 1 + ... | no nisb = 0 + count-B (suc n) with is-B (h (suc n)) + ... | yes isb = suc (count-B n) + ... | no nisb = count-B n + + maxb : ℕ + maxb = count-B (finite fa) + + -- + -- countB record create ℕ → B and its injection + -- + record CountB (n : ℕ) : Set where + field + b : B + cb : ℕ + b=cn : h cb ≡ g b + cb=n : count-B cb ≡ suc n + cb-inject : (cb1 : ℕ) → Is B C g (h cb1) → count-B cb ≡ count-B cb1 → cb ≡ cb1 + + count-B-mono : {i j : ℕ} → i ≤ j → count-B i ≤ count-B j + count-B-mono {i} {j} i≤j with ≤-∨ i≤j + ... | case1 refl = ≤-refl + ... | case2 i<j = lem00 _ _ i<j where + lem00 : (i j : ℕ) → i < j → count-B i ≤ count-B j + lem00 i (suc j) (s≤s i<j) = ≤-trans (count-B-mono i<j) (lem01 j) where + lem01 : (j : ℕ) → count-B j ≤ count-B (suc j) + lem01 zero with is-B (h (suc zero)) + ... | yes isb = refl-≤s + ... | no nisb = ≤-refl + lem01 (suc n) with is-B (h (suc (suc n))) + ... | yes isb = refl-≤s + ... | no nisb = ≤-refl - cb<cb : {i : ℕ} → (i<fa : i ≤ finite fa) → countB.cb (cb00 _ i<fa) < countB.cb (cb00 _ NP.≤-refl) - cb<cb = ? + lem01 : (n i : ℕ) → suc n ≤ count-B i → CountB n + lem01 n i le = lem09 i (count-B i) le refl where + -- injection of count-B + --- + lem06 : (i j : ℕ ) → Is B C g (h i) → Is B C g (h j) → count-B i ≡ count-B j → i ≡ j + lem06 i j bi bj eq = lem08 where + lem20 : (i j : ℕ) → i < j → Is B C g (h i) → Is B C g (h j) → count-B j ≡ count-B i → ⊥ + lem20 zero (suc j) i<j bi bj le with is-B (h 0) | inspect count-B 0 | is-B (h (suc j)) | inspect count-B (suc j) + ... | no nisc | _ | _ | _ = ⊥-elim (nisc bi) + ... | yes _ | _ | no nisc | _ = ⊥-elim (nisc bj) + ... | yes _ | record { eq = eq1 } | yes _ | record { eq = eq2 } = ⊥-elim ( nat-≤> lem25 a<sa) where + lem22 : 1 ≡ count-B 0 + lem22 with is-B (h 0) | inspect count-B 0 + ... | yes _ | record { eq = eq1 } = refl + ... | no nisa | _ = ⊥-elim ( nisa bi ) + lem24 : count-B j ≡ 0 + lem24 = cong pred le + lem25 : 1 ≤ 0 + lem25 = begin + 1 ≡⟨ lem22 ⟩ + count-B 0 ≤⟨ count-B-mono {0} {j} z≤n ⟩ + count-B j ≡⟨ lem24 ⟩ + 0 ∎ where open ≤-Reasoning + lem20 (suc i) zero () bi bj le + lem20 (suc i) (suc j) (s≤s i<j) bi bj le = ⊥-elim ( nat-≡< lem24 lem21 ) where + -- + -- i < suc i ≤ j + -- cb i < suc (cb i) < cb (suc i) ≤ cb j + -- suc (cb i) ≡ suc (cb j) → cb i ≡ cb j + lem22 : suc (count-B i) ≡ count-B (suc i) + lem22 with is-B (h (suc i)) | inspect count-B (suc i) + ... | yes _ | record { eq = eq1 } = refl + ... | no nisa | _ = ⊥-elim ( nisa bi ) + lem23 : suc (count-B j) ≡ count-B (suc j) + lem23 with is-B (h (suc j)) | inspect count-B (suc j) + ... | yes _ | record { eq = eq1 } = refl + ... | no nisa | _ = ⊥-elim ( nisa bj ) + lem24 : count-B i ≡ count-B j + lem24 with is-B (h (suc i)) | inspect count-B (suc i) | is-B (h (suc j)) | inspect count-B (suc j) + ... | no nisc | _ | _ | _ = ⊥-elim (nisc bi) + ... | yes _ | _ | no nisc | _ = ⊥-elim (nisc bj) + ... | yes _ | record { eq = eq1 } | yes _ | record { eq = eq2 } = sym (cong pred le) + lem21 : suc (count-B i) ≤ count-B j + lem21 = begin + suc (count-B i) ≡⟨ lem22 ⟩ + count-B (suc i) ≤⟨ count-B-mono i<j ⟩ + count-B j ∎ where + open ≤-Reasoning + lem08 : i ≡ j + lem08 with <-cmp i j + ... | tri< a ¬b ¬c = ⊥-elim ( lem20 i j a bi bj (sym eq) ) + ... | tri≈ ¬a b ¬c = b + ... | tri> ¬a ¬b c₁ = ⊥-elim ( lem20 j i c₁ bj bi eq ) + lem07 : (n i : ℕ) → count-B i ≡ suc n → CountB n + lem07 n 0 eq with is-B (h 0) | inspect count-B 0 + ... | yes isb | record { eq = eq1 } = record { b = Is.a isb ; cb = 0 ; b=cn = sym (Is.fa=c isb) ; cb=n = trans eq1 eq + ; cb-inject = λ cb1 iscb1 cb1eq → lem12 cb1 iscb1 (subst (λ k → k ≡ count-B cb1) eq1 cb1eq) } where + lem12 : (cb1 : ℕ) → Is B C g (h cb1) → 1 ≡ count-B cb1 → 0 ≡ cb1 + lem12 cb1 iscb1 cbeq = lem06 0 cb1 isb iscb1 (trans eq1 cbeq) + ... | no nisb | record { eq = eq1 } = ⊥-elim ( nat-≡< eq (s≤s z≤n ) ) + lem07 n (suc i) eq with is-B (h (suc i)) | inspect count-B (suc i) + ... | yes isb | record { eq = eq1 } = record { b = Is.a isb ; cb = suc i ; b=cn = sym (Is.fa=c isb) ; cb=n = trans eq1 eq + ; cb-inject = λ cb1 iscb1 cb1eq → lem12 cb1 iscb1 (subst (λ k → k ≡ count-B cb1) eq1 cb1eq) } where + lem12 : (cb1 : ℕ) → Is B C g (h cb1) → suc (count-B i) ≡ count-B cb1 → suc i ≡ cb1 + lem12 cb1 iscb1 cbeq = lem06 (suc i) cb1 isb iscb1 (trans eq1 cbeq) + ... | no nisb | record { eq = eq1 } = lem07 n i eq + + -- starting from 0, if count B i ≡ suc n, this is it + + lem09 : (i j : ℕ) → suc n ≤ j → j ≡ count-B i → CountB n + lem09 0 (suc j) (s≤s le) eq with ≤-∨ (s≤s le) + ... | case1 eq1 = lem07 n 0 (sym (trans eq1 eq )) + ... | case2 (s≤s lt) with is-B (h 0) | inspect count-B 0 + ... | yes isb | record { eq = eq1 } = ⊥-elim ( nat-≤> (≤-trans (s≤s lt) (refl-≤≡ eq) ) (s≤s (s≤s z≤n)) ) + ... | no nisb | record { eq = eq1 } = ⊥-elim (nat-≡< (sym eq) (s≤s z≤n)) + lem09 (suc i) (suc j) (s≤s le) eq with ≤-∨ (s≤s le) + ... | case1 eq1 = lem07 n (suc i) (sym (trans eq1 eq )) + ... | case2 (s≤s lt) with is-B (h (suc i)) | inspect count-B (suc i) + ... | yes isb | record { eq = eq1 } = lem09 i j lt (cong pred eq) + ... | no nisb | record { eq = eq1 } = lem09 i (suc j) (≤-trans lt a≤sa) eq + + bton : B → ℕ + bton b = pred (count-B (h⁻¹ (g b))) + + lem22 : {n : ℕ } → n < maxb → suc n ≤ count-B n + lem22 {n} n<mb = ? + + lem23 : (b : B) → 0 < count-B (h⁻¹ (g b)) + lem23 = ? + + bton<maxb : (b : B) → bton b < maxb + bton<maxb b = begin + suc (bton b) ≡⟨ sucprd (lem23 b) ⟩ + count-B (h⁻¹ (g b)) ≤⟨ count-B-mono {h⁻¹ (g b)} {finite fa} (<to≤ fin<n) ⟩ + count-B (finite fa) ≡⟨ refl ⟩ + maxb ∎ where + open ≤-Reasoning + + ntob : (n : ℕ) → n < maxb → B + ntob n n<mb = CountB.b (lem01 n n (lem22 n<mb)) + + biso : (n : ℕ) → (n<mb : n < maxb) → bton (ntob n n<mb ) ≡ n + biso n n<mb = begin + bton (ntob n n<mb ) ≡⟨ refl ⟩ + pred (count-B (h⁻¹ (g (CountB.b CB)))) ≡⟨ sym ( cong (λ k → pred (count-B (h⁻¹ k))) ( CountB.b=cn CB)) ⟩ + pred (count-B (h⁻¹ (h (CountB.cb CB)))) ≡⟨ cong (λ k → pred (count-B k)) (h-iso _ cb<fa) ⟩ + pred (count-B (CountB.cb CB)) ≡⟨ cong pred (CountB.cb=n CB) ⟩ + pred (suc n) ≡⟨ refl ⟩ + n ∎ where + open ≡-Reasoning + CB : CountB n + CB = lem01 n n (lem22 n<mb) + cb<fa : CountB.cb CB < finite fa + cb<fa = ? + + + -- + -- uniqueness of ntob is proved by injection + -- + biso1 : (b : B) → ntob (bton b) (bton<maxb b) ≡ b + biso1 b = ? +