Mercurial > hg > Members > kono > Proof > automaton
diff agda/root2.agda @ 146:6663205ed308
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 30 Dec 2020 12:07:07 +0900 |
parents | cdfdc8bfb3db |
children | 0d8a834c9c50 |
line wrap: on
line diff
--- a/agda/root2.agda Tue Dec 29 17:53:40 2020 +0900 +++ b/agda/root2.agda Wed Dec 30 12:07:07 2020 +0900 @@ -31,7 +31,10 @@ even*n {n} {m} en = subst even (*-comm m n) (n*even {m} {n} en) gcd1 : ( i i0 j j0 : ℕ ) → ℕ -gcd1 zero i0 zero j0 = i0 +gcd1 zero i0 zero j0 with <-cmp i0 j0 +... | tri< a ¬b ¬c = j0 +... | tri≈ ¬a refl ¬c = i0 +... | tri> ¬a ¬b c = i0 gcd1 zero i0 (suc zero) j0 = 1 gcd1 zero zero (suc (suc j)) j0 = j0 gcd1 zero (suc i0) (suc (suc j)) j0 = gcd1 i0 (suc i0) (suc j) (suc (suc j)) @@ -59,25 +62,58 @@ -- gcd25 : { n m : ℕ} → n > 1 → m > 1 → n - m > 0 → gcd n m ≡ gcd m n -- gcd27 : { n m : ℕ} → n > 1 → m > 1 → n - m > 0 → gcd n k ≡ k → k ≤ n +gcd22 : ( i i0 o o0 : ℕ ) → gcd1 (suc i) i0 (suc o) o0 ≡ gcd1 i i0 o o0 +gcd22 zero i0 zero o0 = refl +gcd22 zero i0 (suc o) o0 = refl +gcd22 (suc i) i0 zero o0 = refl +gcd22 (suc i) i0 (suc o) o0 = refl + +gcdsym : { n m : ℕ} → gcd n m ≡ gcd m n +gcdsym {n} {m} = gcdsym1 n n m m where + gcdsym0 : (i : ℕ) → gcd1 zero i zero i ≡ gcd1 zero i zero i + gcdsym0 i = refl + gcdsym2 : (i j : ℕ) → gcd1 zero i zero j ≡ gcd1 zero j zero i + gcdsym2 i j with <-cmp i j | <-cmp j i + ... | tri< a ¬b ¬c | tri< a₁ ¬b₁ ¬c₁ = ⊥-elim (nat-<> a a₁) + ... | tri< a ¬b ¬c | tri≈ ¬a b ¬c₁ = ⊥-elim (nat-≡< (sym b) a) + ... | tri< a ¬b ¬c | tri> ¬a ¬b₁ c = refl + ... | tri≈ ¬a b ¬c | tri< a ¬b ¬c₁ = ⊥-elim (nat-≡< (sym b) a) + ... | tri≈ ¬a refl ¬c | tri≈ ¬a₁ refl ¬c₁ = refl + ... | tri≈ ¬a b ¬c | tri> ¬a₁ ¬b c = ⊥-elim (nat-≡< b c) + ... | tri> ¬a ¬b c | tri< a ¬b₁ ¬c = refl + ... | tri> ¬a ¬b c | tri≈ ¬a₁ b ¬c = ⊥-elim (nat-≡< b c) + ... | tri> ¬a ¬b c | tri> ¬a₁ ¬b₁ c₁ = ⊥-elim (nat-<> c c₁) + gcdsym1 : ( i i0 j j0 : ℕ ) → gcd1 i i0 j j0 ≡ gcd1 j j0 i i0 + gcdsym1 zero zero zero zero = refl + gcdsym1 zero zero zero (suc j0) = refl + gcdsym1 zero (suc i0) zero zero = refl + gcdsym1 zero (suc i0) zero (suc j0) = gcdsym2 (suc i0) (suc j0) + gcdsym1 zero zero (suc zero) j0 = refl + gcdsym1 zero zero (suc (suc j)) j0 = refl + gcdsym1 zero (suc i0) (suc zero) j0 = refl + gcdsym1 zero (suc i0) (suc (suc j)) j0 = gcdsym1 i0 (suc i0) (suc j) (suc (suc j)) + gcdsym1 (suc zero) i0 zero j0 = refl + gcdsym1 (suc (suc i)) i0 zero zero = refl + gcdsym1 (suc (suc i)) i0 zero (suc j0) = gcdsym1 (suc i) (suc (suc i))j0 (suc j0) + gcdsym1 (suc i) i0 (suc j) j0 = subst₂ (λ j k → j ≡ k ) (sym (gcd22 i _ _ _)) (sym (gcd22 j _ _ _)) (gcdsym1 i i0 j j0 ) + gcd24 : { n m k : ℕ} → n > 1 → m > 1 → k > 1 → gcd n k ≡ k → gcd m k ≡ k → ¬ ( gcd n m ≡ 1 ) gcd24 {n} {m} {k} 1<n 1<m 1<k gn gm gnm = gcd21 n n m m k k 1<n 1<m 1<k gn gm gnm where - gcd22 : ( i i0 o o0 : ℕ ) → gcd1 (suc i) i0 (suc o) o0 ≡ gcd1 i i0 o o0 - gcd22 zero i0 zero o0 = refl - gcd22 zero i0 (suc o) o0 = refl - gcd22 (suc i) i0 zero o0 = refl - gcd22 (suc i) i0 (suc o) o0 = refl gcd23 : { j j0 : ℕ } → 1 < j → 1 < j0 → ¬ (gcd1 zero zero j j0 ≡ 1) - gcd23 {zero} {suc j0} 1<j 1<j0 () + gcd23 {zero} {suc j0} 1<j 1<j0 _ = {!!} gcd23 {suc zero} {suc j0} 1<j 1<j0 gn = nat-<≡ 1<j gcd23 {suc (suc j)} {suc .0} 1<j 1<j0 refl = nat-<≡ 1<j0 1<ss : {j : ℕ} → 1 < suc (suc j) 1<ss = s≤s (s≤s z≤n) gcd21 : ( i i0 j j0 o o0 : ℕ ) → 1 < i0 → 1 < j0 → 1 < o0 → gcd1 i i0 o o0 ≡ k → gcd1 j j0 o o0 ≡ k → gcd1 i i0 j j0 ≡ 1 → ⊥ - gcd21 zero i0 zero j0 o o0 1<i 1<j 1<o refl gm gnm = nat-≡< (sym gnm) 1<i + gcd21 zero i0 zero j0 o o0 1<i 1<j 1<o refl gm gnm = nat-≡< (sym gnm) {!!} --- gcd1 zero i0 o o0 ≡ k o = suc zero → k ≡ 1 --- i0 = zero , o = suc (suc o) → o0 = k -> gcd1 zero zero (suc j) j0 ≡ 1 -- i0 = suc i0, o = suc (suc o) → gn = gcd1 i0 (suc i0) (suc o) (suc (suc o)) - gcd21 zero i0 (suc j) j0 o o0 1<i 1<j 1<o gn gm gnm = {!!} + gcd21 zero i0 (suc j) j0 zero o0 1<i 1<j 1<o refl gm gnm = {!!} + gcd21 zero i0 (suc j) j0 (suc zero) o0 1<i 1<j 1<o refl gm gnm = nat-<≡ 1<k + gcd21 zero (suc i0) (suc j) j0 (suc (suc o)) o0 1<i 1<j 1<o gn gm gnm = + gcd21 i0 {!!} (suc j) j0 (suc o) (suc (suc o)) 1<i 1<j {!!} gn {!!} {!!} gcd21 (suc i) i0 zero j0 o o0 1<i 1<j 1<o gn gm gnm = {!!} -- ? gcd21 (suc i) i0 (suc j) j0 zero o0 1<i 1<j 1<o gn gm gnm = {!!}