Mercurial > hg > Members > kono > Proof > automaton
diff agda/flcagl.agda @ 48:68e5f56cf01f
fix coinduction
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 06 Apr 2019 08:35:29 +0900 |
parents | dfc2f65b07ea |
children | 4135d56b8120 |
line wrap: on
line diff
--- a/agda/flcagl.agda Sat Apr 06 01:33:16 2019 +0900 +++ b/agda/flcagl.agda Sat Apr 06 08:35:29 2019 +0900 @@ -147,11 +147,6 @@ ≅ν (union-cong p q) = cong₂ _∨_ (≅ν p) (≅ν q) ≅δ (union-cong p q) a = union-cong (≅δ p a) (≅δ q a) - -- union-union-distr : ∀{i} (k {l m} : Lang ∞) → ( ( k ∪ l ) ∪ m ) ≅⟨ i ⟩≅ ( ( k ∪ m ) ∪ ( l ∪ m ) ) - -- ≅ν (union-union-distr k) = {!!} - -- ≅δ (union-union-distr k) a = {!!} - - withExample : (P : Bool → Set) (p : P true) (q : P false) → {A : Set} (g : A → Bool) (x : A) → P (g x) withExample P p q g x with g x @@ -167,19 +162,17 @@ infix 5 _≅⟨_⟩≅_ postulate concat-union-distribl : ∀{i} (k {l m} : Lang ∞) → ( k ∪ l ) · m ≅⟨ i ⟩≅ ( k · m ) ∪ ( l · m ) - - union-swap24 : {!!} - union-swap24 = {!!} + union-swap24 : ∀{i} (k {l m} : Lang ∞) (a : A ) → (δ k a · l ∪ δ k a · m) ∪ δ l a ∪ δ m a + ≅⟨ i ⟩≅ ((δ k a · l ∪ δ l a) ∪ δ k a · m ∪ δ m a) concat-union-distribr : ∀{i} (k {l m} : Lang ∞) → k · ( l ∪ m ) ≅⟨ i ⟩≅ ( k · l ) ∪ ( k · m ) - ≅ν (concat-union-distribr k) = {!!} -- ∧-distribʳ-∨ (ν k) _ _ + ≅ν (concat-union-distribr k) = ∧-distribˡ-∨ (ν k) _ _ ≅δ (concat-union-distribr k) a with ν k ≅δ (concat-union-distribr k {l} {m}) a | true = begin δ k a · (l ∪ m) ∪ (δ l a ∪ δ m a) - -- ≈⟨ union-cong (concat-union-distribr (δ k a)) ⟩ - ≈⟨ {!!} ⟩ + ≈⟨ union-cong (concat-union-distribr (δ k a)) ≅refl ⟩ (δ k a · l ∪ δ k a · m) ∪ (δ l a ∪ δ m a) - ≈⟨ {!!} ⟩ + ≈⟨ union-swap24 k a ⟩ (δ k a · l ∪ δ l a) ∪ (δ k a · m ∪ δ m a) ∎ where open EqR (Bis _) @@ -211,9 +204,8 @@ ≅ν (star-idem l) = refl ≅δ (star-idem l) a = begin δ ((l *) *) a ≈⟨ concat-assoc (δ l a) ⟩ - δ l a · (l *) · ((l *) *) ≈⟨ {!!} ⟩ - δ l a · l * · l * ≈⟨ {!!} ⟩ - δ l a · ((l *) *) ≈⟨ concat-congr (star-idem l) ⟩ + δ l a · ((l *) · ((l *) *)) ≈⟨ concat-congr ( concat-congr (star-idem l )) ⟩ + δ l a · ((l *) · (l *)) ≈⟨ concat-congr (star-concat-idem l ) ⟩ δ l a · l * ∎ where open EqR (Bis _) @@ -322,9 +314,10 @@ lang (composeA da1 s2 da2) (δ da1 s1 a , δ da2 s2 a ∷ δs da2 ss a) ≈⟨ composeA-gen da1 da2 (δ da1 s1 a) s2 (δs da2 (s2 ∷ ss) a) ⟩ lang da1 (δ da1 s1 a) · lang da2 s2 ∪ lang (powA da2) (δs da2 (s2 ∷ ss) a) - ≈⟨ {!!} ⟩ - (lang da2 (δ da2 s2 a) ∪ lang (powA da2) (δs da2 ss a)) - ≈⟨ ≅sym {!!} ⟩ + ≈⟨ union-cong ≅refl (powA-cons da2) ⟩ + lang da1 (δ da1 s1 a) · lang da2 s2 ∪ + (lang da2 (δ da2 s2 a) ∪ lang (powA da2) (δs da2 ss a)) + ≈⟨ ≅sym (union-assoc _) ⟩ (lang da1 (δ da1 s1 a) · lang da2 s2 ∪ lang da2 (δ da2 s2 a)) ∪ lang (powA da2) (δs da2 ss a) ∎ where open EqR (Bis _)