Mercurial > hg > Members > kono > Proof > automaton
diff agda/gcd.agda @ 156:91265c971200
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 02 Jan 2021 11:49:44 +0900 |
parents | 4b6063ad6de2 |
children | 0b74851665ee |
line wrap: on
line diff
--- a/agda/gcd.agda Sat Jan 02 10:05:32 2021 +0900 +++ b/agda/gcd.agda Sat Jan 02 11:49:44 2021 +0900 @@ -156,22 +156,30 @@ gcd1 1 1 (suc j) (suc j) ∎ where open ≡-Reasoning gcd200 (suc (suc i)) i0 (suc j) zero i=i0 () -gcd4 : ( n k : ℕ ) → gcd n k ≡ k → k ≤ n -gcd4 n k gn = gcd40 n n k k gn where - gcd40 : (i i0 j j0 : ℕ) → gcd1 i i0 j j0 ≡ j0 → j0 ≤ i0 - gcd40 zero i0 zero j0 gn = {!!} - gcd40 zero i0 (suc j) j0 gn = {!!} - gcd40 (suc i) i0 zero j0 gn = {!!} - gcd40 (suc i) i0 (suc j) j0 gn = gcd40 i i0 j j0 (subst (λ k → k ≡ j0) (gcd22 i i0 j j0) gn) +gcd6 : ( i i0 j j0 n n0 : ℕ) → gcd1 i i0 j j0 ≡ gcd1 0 n 0 n0 → n ≡ n0 +gcd6 i i0 j j0 n n0 = {!!} -gcd3 : ( n k : ℕ ) → n ≤ k + k → gcd n k ≡ k → n ≡ k -gcd3 n k n<2k gn = {!!} +gcd5 : ( n k : ℕ ) → 1 < n → gcd n k ≤ n +gcd5 n k 0<n = gcd50 n n k k 0<n ≤-refl ≤-refl where + gcd50 : (i i0 j j0 : ℕ) → 1 < i0 → i ≤ i0 → j ≤ j0 → gcd1 i i0 j j0 ≤ i0 + gcd50 zero i0 zero j0 0<i i<i0 j<j0 with <-cmp i0 j0 + ... | tri< a ¬b ¬c = {!!} -- ≤-refl -- j0 ≤ i0 + ... | tri≈ ¬a refl ¬c = ≤-refl + ... | tri> ¬a ¬b c = ≤-refl + gcd50 zero i0 (suc j) j0 0<i i<i0 j<j0 = {!!} + gcd50 (suc i) i0 j j0 0<i i<i0 j<j0 = {!!} -gcd23 : ( n m k : ℕ) → gcd n k ≡ k → gcd m k ≡ k → k ≤ gcd n m +gcd4 : ( n k : ℕ ) → 1 < n → gcd n k ≡ k → k ≤ n +gcd4 = {!!} + +gcd3 : ( n k : ℕ ) → 0 < n → n ≤ k + k → gcd n k ≡ k → n ≡ k +gcd3 n k 0<n n<2k gn = {!!} + +gcd23 : ( n m k : ℕ) → 0 < n → 0 < m → gcd n k ≡ k → gcd m k ≡ k → k ≤ gcd n m gcd23 = {!!} gcd24 : { n m k : ℕ} → n > 1 → m > 1 → k > 1 → gcd n k ≡ k → gcd m k ≡ k → ¬ ( gcd n m ≡ 1 ) -gcd24 {n} {m} {k} 1<n 1<m 1<k gn gm gnm = ⊥-elim ( nat-≡< (sym gnm) (≤-trans 1<k (gcd23 n m k gn gm ))) +gcd24 {n} {m} {k} 1<n 1<m 1<k gn gm gnm = ⊥-elim ( nat-≡< (sym gnm) (≤-trans 1<k (gcd23 n m k {!!} {!!} gn gm ))) record Even (i : ℕ) : Set where field