Mercurial > hg > Members > kono > Proof > automaton
diff agda/gcd.agda @ 158:c332bb9dbf98
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 02 Jan 2021 18:23:54 +0900 |
parents | 0b74851665ee |
children | 5530b3789e0c |
line wrap: on
line diff
--- a/agda/gcd.agda Sat Jan 02 16:51:34 2021 +0900 +++ b/agda/gcd.agda Sat Jan 02 18:23:54 2021 +0900 @@ -177,16 +177,19 @@ (gcd50 i i0 j j0 0<i (≤-trans refl-≤s i<i0) (≤-trans refl-≤s j<j0)) gcd4 : ( n k : ℕ ) → 1 < n → gcd n k ≡ k → k ≤ n -gcd4 = {!!} +gcd4 n k 1<n eq = subst (λ m → m ≤ n ) eq (gcd5 n k 1<n) -gcd3 : ( n k : ℕ ) → 0 < n → n ≤ k + k → gcd n k ≡ k → n ≡ k -gcd3 n k 0<n n<2k gn = {!!} +gcd3 : ( n k : ℕ ) → 1 < n → n ≤ k + k → gcd n k ≡ k → n ≡ k +gcd3 n k 1<n n<2k gn with gcd4 n k 1<n gn | <-cmp n k +... | k≤n | tri< a ¬b ¬c = ⊥-elim (nat-≤> k≤n a) +... | k≤n | tri≈ ¬a b ¬c = b +... | k≤n | tri> ¬a ¬b c = ⊥-elim (nat-≤> k≤n {!!} ) -gcd23 : ( n m k : ℕ) → 0 < n → 0 < m → gcd n k ≡ k → gcd m k ≡ k → k ≤ gcd n m +gcd23 : ( n m k : ℕ) → 1 < n → 1 < m → gcd n k ≡ k → gcd m k ≡ k → k ≤ gcd n m gcd23 = {!!} gcd24 : { n m k : ℕ} → n > 1 → m > 1 → k > 1 → gcd n k ≡ k → gcd m k ≡ k → ¬ ( gcd n m ≡ 1 ) -gcd24 {n} {m} {k} 1<n 1<m 1<k gn gm gnm = ⊥-elim ( nat-≡< (sym gnm) (≤-trans 1<k (gcd23 n m k {!!} {!!} gn gm ))) +gcd24 {n} {m} {k} 1<n 1<m 1<k gn gm gnm = ⊥-elim ( nat-≡< (sym gnm) (≤-trans 1<k (gcd23 n m k 1<n 1<m gn gm ))) record Even (i : ℕ) : Set where field