Mercurial > hg > Members > kono > Proof > automaton
diff automaton-in-agda/src/derive.agda @ 365:c46f04f7c99a
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 21 Jul 2023 12:01:16 +0900 |
parents | 00f5076ef2de |
children | 19410aadd636 |
line wrap: on
line diff
--- a/automaton-in-agda/src/derive.agda Wed Jul 19 11:32:23 2023 +0900 +++ b/automaton-in-agda/src/derive.agda Fri Jul 21 12:01:16 2023 +0900 @@ -113,9 +113,6 @@ sb-id (y *) (sb* x t u) | suc k | record{ eq = eq1 } = sb-id y ? sb-id (x0 & y0) (sb& .x0 .y0 xn .k x z z₁) | suc k | record { eq = eq1 } = sb-id x0 ? /\ sb-id y0 ? -SBTA : (r : Regex Σ) → Automaton (SB r (rank r) → Bool) Σ -SBTA = ? - open import bijection using ( InjectiveF ; Is ) finSBTA : (r : Regex Σ) → FiniteSet (SB r (rank r) → Bool) @@ -129,29 +126,6 @@ fb00 (suc n) (r & r₁) eq = iso-fin (fin-∧ (fb00 n r ?) (fb00 n r₁ ?)) ? fb00 (suc n) (r || r₁) eq = iso-fin (fin-∧ (fb00 (suc n) r ?) (fb00 (suc n) r₁ ?)) ? -fb01 : (n : ℕ ) → (r : Regex Σ) → rank r ≡ n → Derivative r → SB r (rank r) → Bool -fb01 n r eq d sb with is-derived d -fb01 n r eq d sb | unit = sb-id r sb -fb01 zero .ε eq d sbε | derive {y} ss i = true -fb01 zero .φ eq d sbφ | derive {y} ss i = true -fb01 zero .(< s >) eq d (sb<> s) | derive {y} ss i with eq? s i -... | yes _ = true -... | no _ = false -fb01 zero .(x || y) eq d (sb| x y xn yn .(rank (x || y)) sb sb₁ x₁) | derive {y₂} ss i = ? -fb01 (suc n) .(x || y) eq d (sb| x y xn yn .(rank (x || y)) sb sb₁ x₁) | derive {y₂} ss i = ? -fb01 (suc n) .(x *) eq d (sb* x xn u ) | derive {y₂} ss i = ? -fb01 (suc n) t eq d z | derive {y₂} ss i = ? - -injSB : (r : Regex Σ) → InjectiveF (Derivative r) (SB r (rank r) → Bool) -injSB r = record { f = fb01 (rank r) r refl ; inject = ? } where - fb02 : (x y : Derivative r) → fb01 (rank r) r refl x ≡ fb01 (rank r) r refl y → x ≡ y - fb02 = ? - -decdb : (r : Regex Σ) → (a : SB r (rank r) → Bool) - → Dec (Is (Derivative r) (SB r (rank r) → Bool) (InjectiveF.f (injSB r)) a ) -decdb r a with fb01 (rank r) r refl record { state = r ; is-derived = ? } -... | t = ? - record SBf (r : Regex Σ) (n : ℕ) : Set where field rank=n : rank r ≡ n @@ -160,12 +134,25 @@ dec : (a : SB r n → Bool ) → Dec (Is (Derivative r) (SB r n → Bool) f a ) SBN : (r : Regex Σ) → SBf r (rank r) -SBN ε = record { rank=n = refl ; f = ? ; sb-inject = ? ; dec = ? } +SBN ε = record { rank=n = refl ; f = fb02 ; sb-inject = fl05 ; dec = fl03 } where + fb02 : Derivative ε → SB ε 0 → Bool + fb02 d sbε = true + fl03 : (a : SB ε 0 → Bool) → Dec (Is (Derivative ε) (SB ε 0 → Bool) fb02 a) + fl03 a with a sbε | inspect a sbε + ... | true | record { eq = eq1 } = yes record { a = record { state = ε ; is-derived = unit } + ; fa=c = f-extensionality fl04 } where + fl04 : (x : SB ε 0) → fb02 (record { state = ε ; is-derived = unit }) x ≡ a x + fl04 sbε = sym eq1 + ... | false | record { eq = eq1} = no (λ n → ¬-bool {a sbε} eq1 (fl04 n)) where + fl04 : Is (Derivative ε) (SB ε 0 → Bool) fb02 a → a sbε ≡ true + fl04 n = sym (cong (λ k → k sbε) (Is.fa=c n)) + fl05 : {x y : Derivative ε} → fb02 x ≡ fb02 y → x ≡ y + fl05 {x} {y} eq = ? SBN φ = ? SBN (r *) = ? SBN (r & r₁) = record { rank=n = ? ; f = ? ; sb-inject = ? ; dec = ? } SBN (r || r₁) = ? -SBN < x > = record { rank=n = refl ; f = ? ; sb-inject = ? ; dec = ? } +SBN < x > = record { rank=n = refl ; f = ? ; sb-inject = ? ; dec = ? } finite-derivative : (r : Regex Σ) → FiniteSet (Derivative r) finite-derivative r = inject-fin (finSBTA r) record { f = SBf.f (SBN r) ; inject = SBf.sb-inject (SBN r) } (SBf.dec (SBN r))