diff automaton-in-agda/src/fin.agda @ 289:c9802aa2a8c9

...
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Tue, 28 Dec 2021 15:25:22 +0900
parents e4b910112fdf
children 24bcce90da91
line wrap: on
line diff
--- a/automaton-in-agda/src/fin.agda	Tue Dec 28 12:38:16 2021 +0900
+++ b/automaton-in-agda/src/fin.agda	Tue Dec 28 15:25:22 2021 +0900
@@ -122,6 +122,13 @@
            toℕ (fromℕ< (≤-trans lt (fin≤n y)) ) ≡⟨ toℕ-fromℕ< _ ⟩
            toℕ x  ∎  ) where open ≡-Reasoning
 
+f<→< : {n : ℕ } → { x y : Fin n} → x Data.Fin.< y  →  toℕ x < toℕ y  
+f<→< {_} {zero} {suc y} (s≤s lt) = s≤s z≤n
+f<→< {_} {suc x} {suc y} (s≤s lt) = s≤s (f<→< {_} {x} {y} lt)
+
+f≡→≡ : {n : ℕ } → { x y : Fin n} → x ≡ y  →  toℕ x ≡ toℕ y  
+f≡→≡ refl = refl
+
 open import Data.List
 open import Relation.Binary.Definitions
 
@@ -159,6 +166,11 @@
      lseq : list-less qs ≡ ls
      ls< : (length ls ≡ length qs) ∨ (suc (length ls) ≡ length qs) 
 
+fin010 : {n m : ℕ } {x : Fin n} (c : suc (toℕ x) ≤ toℕ (fromℕ< {m} a<sa) ) → toℕ (fromℕ< (≤-trans c (fin≤n (fromℕ< a<sa)))) ≡ toℕ x
+fin010 {_} {_} {x} c = begin 
+           toℕ (fromℕ< (≤-trans c (fin≤n (fromℕ< a<sa))))  ≡⟨ toℕ-fromℕ< _ ⟩
+           toℕ x  ∎   where open ≡-Reasoning
+
 fin-dup-in-list>n : {n : ℕ } → (qs : List (Fin n))  → (len> : length qs > n ) → FDup-in-list n qs
 fin-dup-in-list>n {zero} [] ()
 fin-dup-in-list>n {zero} (() ∷ qs) lt
@@ -173,18 +185,36 @@
               → fin-phase2 (fin+1 i) qs ≡ true
           f1-phase2 (x ∷ qs) p (case1 q1) with  <-fcmp (fromℕ< a<sa) x
           ... | tri< a ¬b ¬c = ⊥-elim ( nat-≤> a (subst (λ k → toℕ x < suc k ) (sym fin<asa) (fin≤n _ )))
-          ... | tri≈ ¬a b ¬c = {!!}
+          f1-phase2 (x ∷ qs) p (case1 q1) | tri≈ ¬a b ¬c with <-fcmp (fin+1 i) x
+          ... | tri< a ¬b ¬c₁ = f1-phase2 qs p (case2 q1)
+          ... | tri≈ ¬a₁ b₁ ¬c₁ = refl
+          ... | tri> ¬a₁ ¬b c = f1-phase2 qs p (case2 q1)
           f1-phase2 (x ∷ qs) p (case1 q1) | tri> ¬a ¬b c with <-fcmp i (fromℕ< (≤-trans c (fin≤n (fromℕ< a<sa)))) | <-fcmp (fin+1 i) x
           ... | tri< a ¬b₁ ¬c | tri< a₁ ¬b₂ ¬c₁ = f1-phase2 qs p (case1 q1)
-          ... | tri< a ¬b₁ ¬c | tri≈ ¬a₁ b ¬c₁ = {!!}
-          ... | tri< a ¬b₁ ¬c | tri> ¬a₁ ¬b₂ c₁ = {!!}
-          ... | tri≈ ¬a₁ b ¬c | tri< a ¬b₁ ¬c₁ = {!!}
+          ... | tri< a ¬b₁ ¬c | tri≈ ¬a₁ b ¬c₁  = ⊥-elim ( ¬a₁ (subst₂ (λ j k → j < k) (sym fin+1-toℕ) (toℕ-fromℕ< _) a ))
+          ... | tri< a ¬b₁ ¬c | tri> ¬a₁ ¬b₂ c₁ = ⊥-elim ( ¬a₁ (subst₂ (λ j k → j < k) (sym fin+1-toℕ) (toℕ-fromℕ< _) a ))
+          ... | tri≈ ¬a₁ b ¬c | tri< a ¬b₁ ¬c₁  = ⊥-elim ( ¬a₁ (subst₂ (λ j k → j < k) fin+1-toℕ (sym (toℕ-fromℕ< _)) a ))
           ... | tri≈ ¬a₁ b ¬c | tri≈ ¬a₂ b₁ ¬c₁ = refl
-          ... | tri≈ ¬a₁ b ¬c | tri> ¬a₂ ¬b₁ c₁ = {!!}
-          ... | tri> ¬a₁ ¬b₁ c₁ | tri< a ¬b₂ ¬c = {!!}
-          ... | tri> ¬a₁ ¬b₁ c₁ | tri≈ ¬a₂ b ¬c = {!!}
+          ... | tri≈ ¬a₁ b ¬c | tri> ¬a₂ ¬b₁ c₁ = ⊥-elim ( ¬c (subst₂ (λ j k → j > k) fin+1-toℕ (sym (toℕ-fromℕ< _)) c₁ ))
+          ... | tri> ¬a₁ ¬b₁ c₁ | tri< a ¬b₂ ¬c = ⊥-elim ( ¬c (subst₂ (λ j k → j > k) (sym fin+1-toℕ) (toℕ-fromℕ< _) c₁ ))
+          ... | tri> ¬a₁ ¬b₁ c₁ | tri≈ ¬a₂ b ¬c = ⊥-elim ( ¬c (subst₂ (λ j k → j > k) (sym fin+1-toℕ) (toℕ-fromℕ< _) c₁ ))
           ... | tri> ¬a₁ ¬b₁ c₁ | tri> ¬a₂ ¬b₂ c₂ = f1-phase2 qs p (case1 q1)
-          f1-phase2 (x ∷ qs) p (case2 q2) = {!!}
+          f1-phase2 (x ∷ qs) p (case2 q1) with  <-fcmp (fromℕ< a<sa) x
+          ... | tri< a ¬b ¬c = ⊥-elim ( nat-≤> a (subst (λ k → toℕ x < suc k ) (sym fin<asa) (fin≤n _ )))
+          f1-phase2 (x ∷ qs) p (case2 q1) | tri≈ ¬a b ¬c with <-fcmp (fin+1 i) x
+          ... | tri< a ¬b ¬c₁ = ⊥-elim ( ¬-bool q1 refl )
+          ... | tri≈ ¬a₁ b₁ ¬c₁ = refl
+          ... | tri> ¬a₁ ¬b c = ⊥-elim ( ¬-bool q1 refl )
+          f1-phase2 (x ∷ qs) p (case2 q1) | tri> ¬a ¬b c with <-fcmp i (fromℕ< (≤-trans c (fin≤n (fromℕ< a<sa)))) | <-fcmp (fin+1 i) x
+          ... | tri< a ¬b₁ ¬c | tri< a₁ ¬b₂ ¬c₁ = f1-phase2 qs p (case2 q1)
+          ... | tri< a ¬b₁ ¬c | tri≈ ¬a₁ b ¬c₁  = ⊥-elim ( ¬a₁ (subst₂ (λ j k → j < k) (sym fin+1-toℕ) (toℕ-fromℕ< _) a ))
+          ... | tri< a ¬b₁ ¬c | tri> ¬a₁ ¬b₂ c₁ = ⊥-elim ( ¬a₁ (subst₂ (λ j k → j < k) (sym fin+1-toℕ) (toℕ-fromℕ< _) a ))
+          ... | tri≈ ¬a₁ b ¬c | tri< a ¬b₁ ¬c₁  = ⊥-elim ( ¬a₁ (subst₂ (λ j k → j < k) fin+1-toℕ (sym (toℕ-fromℕ< _)) a ))
+          ... | tri≈ ¬a₁ b ¬c | tri≈ ¬a₂ b₁ ¬c₁ = refl
+          ... | tri≈ ¬a₁ b ¬c | tri> ¬a₂ ¬b₁ c₁ = ⊥-elim ( ¬c (subst₂ (λ j k → j > k) fin+1-toℕ (sym (toℕ-fromℕ< _)) c₁ ))
+          ... | tri> ¬a₁ ¬b₁ c₁ | tri< a ¬b₂ ¬c = ⊥-elim ( ¬c (subst₂ (λ j k → j > k) (sym fin+1-toℕ) (toℕ-fromℕ< _) c₁ ))
+          ... | tri> ¬a₁ ¬b₁ c₁ | tri≈ ¬a₂ b ¬c = ⊥-elim ( ¬c (subst₂ (λ j k → j > k) (sym fin+1-toℕ) (toℕ-fromℕ< _) c₁ ))
+          ... | tri> ¬a₁ ¬b₁ c₁ | tri> ¬a₂ ¬b₂ c₂ =  f1-phase2 qs p (case2 q1 )
           f1-phase1 : (qs : List (Fin (suc n)) ) → fin-phase1 i (list-less qs) ≡ true
               → (fin-phase1 (fromℕ< a<sa) qs ≡ false ) ∨ (fin-phase2 (fromℕ< a<sa) qs ≡ false)
               → fin-phase1 (fin+1 i) qs ≡ true