diff automaton-in-agda/src/regular-concat.agda @ 270:dd98e7e5d4a5

derive worked but finiteness is difficult add regular star
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Fri, 26 Nov 2021 20:02:06 +0900
parents 52ed73a116d0
children 1c8ed1220489
line wrap: on
line diff
--- a/automaton-in-agda/src/regular-concat.agda	Fri Nov 26 09:58:19 2021 +0900
+++ b/automaton-in-agda/src/regular-concat.agda	Fri Nov 26 20:02:06 2021 +0900
@@ -203,7 +203,7 @@
     contain-A (h ∷ t) nq fn qa cond with bool-≡-? ((aend (automaton A) qa) /\  accept (automaton B) (δ (automaton B) (astart B) h) t ) true
     ... | yes eq = bool-or-41 eq  -- found A ++ B all end
     ... | no ne = bool-or-31 (contain-A t (Nmoves NFA (CNFA-exist A B) nq h) fn (δ (automaton A) qa h) lemma11 ) where -- B failed continue with ab-base condtion
-       --- prove ab-ase condition (we haven't checked but case2 b may happen)
+       --- prove ab-case condition (we haven't checked but case2 b may happen)
        lemma11 :  (q : states A ∨ states B) → exists finab (λ qn → nq qn /\ Nδ NFA qn h q) ≡ true → ab-case q (δ (automaton A) qa h) t
        lemma11 (case1 qa')  ex with found← finab ex 
        ... | S with found-q S | inspect found-q S | cond (found-q S) (bool-∧→tt-0 (found-p S))