Mercurial > hg > Members > kono > Proof > automaton
diff agda/flcagl.agda @ 47:dfc2f65b07ea
fix
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 06 Apr 2019 01:33:16 +0900 |
parents | 964e4bd0272a |
children | 68e5f56cf01f |
line wrap: on
line diff
--- a/agda/flcagl.agda Fri Apr 05 16:13:44 2019 +0900 +++ b/agda/flcagl.agda Sat Apr 06 01:33:16 2019 +0900 @@ -162,105 +162,79 @@ {g : A → A} (e : g x ≡ x) → P (g x) rewriteExample p e rewrite e = p - infixr 7 _∪_ + infixr 6 _∪_ infixr 7 _·_ infix 5 _≅⟨_⟩≅_ - concat-union-distribl : ∀{i} (k {l m} : Lang ∞) → ( k ∪ l ) · m ≅⟨ i ⟩≅ ( k · m ) ∪ ( l · m ) - concat-union-distribl = {!!} + postulate + concat-union-distribl : ∀{i} (k {l m} : Lang ∞) → ( k ∪ l ) · m ≅⟨ i ⟩≅ ( k · m ) ∪ ( l · m ) union-swap24 : {!!} union-swap24 = {!!} concat-union-distribr : ∀{i} (k {l m} : Lang ∞) → k · ( l ∪ m ) ≅⟨ i ⟩≅ ( k · l ) ∪ ( k · m ) - ≅ν (concat-union-distribr k) = {!!} -- ∧-distribʳ-∨ (ν k) _ _ + ≅ν (concat-union-distribr k) = {!!} -- ∧-distribʳ-∨ (ν k) _ _ ≅δ (concat-union-distribr k) a with ν k ≅δ (concat-union-distribr k {l} {m}) a | true = begin - {!!} -- δ k a · (l ∪ m) ∪ (δ l a ∪ δ m a) - -- ≈⟨ ? union-cong (concat-union-distribr (δ k a)) ⟩ - -- ≈⟨ ? ⟩ - -- (δ k a · l ∪ δ k a · m) ∪ (δ l a ∪ δ m a) + δ k a · (l ∪ m) ∪ (δ l a ∪ δ m a) + -- ≈⟨ union-cong (concat-union-distribr (δ k a)) ⟩ ≈⟨ {!!} ⟩ - {!!} -- (δ k a · l ∪ δ l a) ∪ (δ k a · m ∪ δ m a) + (δ k a · l ∪ δ k a · m) ∪ (δ l a ∪ δ m a) + ≈⟨ {!!} ⟩ + (δ k a · l ∪ δ l a) ∪ (δ k a · m ∪ δ m a) ∎ where open EqR (Bis _) ≅δ (concat-union-distribr k) a | false = concat-union-distribr (δ k a) - concat-congl : ∀{i} {m l k : Lang ∞} - → l ≅⟨ i ⟩≅ k - → l · m ≅⟨ i ⟩≅ k · m - concat-congl = {!!} - concat-congr : ∀{i} {m l k : Lang ∞} - → l ≅⟨ i ⟩≅ k - → m · l ≅⟨ i ⟩≅ m · k - concat-congr = {!!} - - - concat-assoc : ∀{i} (k {l m} : Lang ∞) → (k · l) · m ≅⟨ i ⟩≅ k · (l · m) - concat-assoc = {!!} - - concat-emptyl : ∀{i} l → ∅ · l ≅⟨ i ⟩≅ ∅ - concat-emptyl = {!!} - concat-emptyr : ∀{i} l → l · ∅ ≅⟨ i ⟩≅ ∅ - concat-emptyr = {!!} - concat-unitl : ∀{i} l → ε · l ≅⟨ i ⟩≅ l - concat-unitl = {!!} - concat-unitr : ∀{i} l → l · ε ≅⟨ i ⟩≅ l - concat-unitr = {!!} - - - star-empty : ∀{i} → ∅ * ≅⟨ i ⟩≅ ε - star-empty = {!!} + postulate + concat-congl : ∀{i} {m l k : Lang ∞} → l ≅⟨ i ⟩≅ k → l · m ≅⟨ i ⟩≅ k · m + concat-congr : ∀{i} {m l k : Lang ∞} → l ≅⟨ i ⟩≅ k → m · l ≅⟨ i ⟩≅ m · k + concat-assoc : ∀{i} (k {l m} : Lang ∞) → (k · l) · m ≅⟨ i ⟩≅ k · (l · m) + concat-emptyl : ∀{i} l → ∅ · l ≅⟨ i ⟩≅ ∅ + concat-emptyr : ∀{i} l → l · ∅ ≅⟨ i ⟩≅ ∅ + concat-unitl : ∀{i} l → ε · l ≅⟨ i ⟩≅ l + concat-unitr : ∀{i} l → l · ε ≅⟨ i ⟩≅ l + star-empty : ∀{i} → ∅ * ≅⟨ i ⟩≅ ε star-concat-idem : ∀{i} (l : Lang ∞) → l * · l * ≅⟨ i ⟩≅ l * ≅ν (star-concat-idem l) = refl ≅δ (star-concat-idem l) a = begin - {!!} - ≈⟨ {!!} ⟩ - {!!} - -- δ l a · l * · l * ∪ δ l a · l * - -- ≈⟨ union-cong (concat-assoc _) ⟩ - --≈⟨ ? ⟩ - -- δ l a · (l * · l *) ∪ δ l a · l * - --≈⟨ ? ⟩ - ---- ≈⟨ union-cong (concat-congr (star-concat-idem _)) ⟩ - -- δ l a · l * ∪ δ l a · l * - --≈⟨ ? ⟩ - ---- ≈⟨ union-idem _ ⟩ - -- δ l a · l * + δ ((l *) · (l *)) a + ≈⟨ union-cong (concat-assoc _) ≅refl ⟩ + δ l a · (l * · l *) ∪ δ l a · l * + ≈⟨ union-cong (concat-congr (star-concat-idem _)) ≅refl ⟩ + δ l a · l * ∪ δ l a · l * + ≈⟨ union-idem _ ⟩ + δ (l *) a ∎ where open EqR (Bis _) star-idem : ∀{i} (l : Lang ∞) → (l *) * ≅⟨ i ⟩≅ l * ≅ν (star-idem l) = refl ≅δ (star-idem l) a = begin - {!!} - ≈⟨ {!!} ⟩ - {!!} - -- δ l a · l * · (l *) * ≈⟨ ? ⟩ - -- δ l a · l * · l * ≈⟨ ? ⟩ - -- δ l a · (l * · l *) ≈⟨ concat-congr (star-concat-idem l) ⟩ - -- δ l a · l * + δ ((l *) *) a ≈⟨ concat-assoc (δ l a) ⟩ + δ l a · (l *) · ((l *) *) ≈⟨ {!!} ⟩ + δ l a · l * · l * ≈⟨ {!!} ⟩ + δ l a · ((l *) *) ≈⟨ concat-congr (star-idem l) ⟩ + δ l a · l * ∎ where open EqR (Bis _) - star-rec : ∀{i} (l : Lang ∞) → l * ≅⟨ i ⟩≅ ε ∪ (l · l *) - star-rec = {!!} + postulate + star-rec : ∀{i} (l : Lang ∞) → l * ≅⟨ i ⟩≅ ε ∪ (l · l *) star-from-rec : ∀{i} (k {l m} : Lang ∞) → ν k ≡ false → l ≅⟨ i ⟩≅ k · l ∪ m → l ≅⟨ i ⟩≅ k * · m ≅ν (star-from-rec k n p) with ≅ν p - ... | b rewrite n = {!!} + ... | b rewrite n = b ≅δ (star-from-rec k {l} {m} n p) a with ≅δ p a ... | q rewrite n = begin (δ l a) - --≈⟨ q ⟩ - -- δ k a · l ∪ δ m a - --≈⟨ union-cong (concat-congr (star-from-rec k {l} {m} n p)) ⟩ - -- (δ k a · (k * · m) ∪ δ m a) - --≈⟨ union-cong (≅sym (concat-assoc (δ k a))) ⟩ - -- (δ k a · k * · m ∪ δ m a) - ≈⟨ {!!} ⟩ - {!!} + ≈⟨ q ⟩ + δ k a · l ∪ δ m a + ≈⟨ union-cong (concat-congr (star-from-rec k {l} {m} n p)) ≅refl ⟩ + (δ k a · (k * · m) ∪ δ m a) + ≈⟨ union-cong (≅sym (concat-assoc (δ k a))) ≅refl ⟩ + (δ k a · (k *)) · m ∪ δ m a ∎ where open EqR (Bis _) @@ -333,33 +307,30 @@ ≅δ (powA-cons da) a = powA-cons da composeA : ∀{S1 S2} (da1 : DA S1)(s2 : S2)(da2 : DA S2) → DA (S1 × List ∞ S2) -ν (composeA da1 s2 da2) (s1 , ss2) = (ν da1 s1 ∧ ν da2 s2) ∨ ν da2 {!!} +ν (composeA da1 s2 da2) (s1 , ss2) = (ν da1 s1 ∧ ν da2 s2) ∨ νs da2 ss2 δ (composeA da1 s2 da2) (s1 , ss2) a = - δ da1 s1 a , {!!} -- δ da2 ? a -- (if ν da1 s1 then s2 ∷ ss2 else ss2) a + δ da1 s1 a , δs da2 (if ν da1 s1 then s2 ∷ ss2 else ss2) a import Relation.Binary.EqReasoning as EqR composeA-gen : ∀{i S1 S2} (da1 : DA S1) (da2 : DA S2) → ∀(s1 : S1)(s2 : S2)(ss : List ∞ S2) → lang (composeA da1 s2 da2) (s1 , ss) ≅⟨ i ⟩≅ lang da1 s1 · lang da2 s2 ∪ lang (powA da2) ss -≅ν (composeA-gen da1 da2 s1 s2 ss) = {!!} +≅ν (composeA-gen da1 da2 s1 s2 ss) = refl ≅δ (composeA-gen da1 da2 s1 s2 ss) a with ν da1 s1 -... | false = {!!} -- composeA-gen da1 da2 (δ da1 s1 a) s2 (δs da2 ss a) +... | false = composeA-gen da1 da2 (δ da1 s1 a) s2 (δs da2 ss a) ... | true = begin - {!!} --- lang (composeA da1 s2 da2) (δ da1 s1 a , δ da2 s2 a ∷ δs da2 ss a) --- ≈⟨ composeA-gen da1 da2 (δ da1 s1 a) s2 (δs da2 (s2 ∷ ss) a) ⟩ --- lang da1 (δ da1 s1 a) · lang da2 s2 ∪ lang (powA da2) (δs da2 (s2 ∷ ss) a) --- ≈⟨ ? ⟩ lang da1 (δ da1 s1 a) · lang da2 s2 ∪ --- (lang da2 (δ da2 s2 a) ∪ lang (powA da2) (δs da2 ss a)) --- ≈⟨ ≅sym ? ⟩ --- (lang da1 (δ da1 s1 a) · lang da2 s2 ∪ lang da2 (δ da2 s2 a)) ∪ lang (powA da2) (δs da2 ss a) - ≈⟨ {!!} ⟩ - {!!} + lang (composeA da1 s2 da2) (δ da1 s1 a , δ da2 s2 a ∷ δs da2 ss a) + ≈⟨ composeA-gen da1 da2 (δ da1 s1 a) s2 (δs da2 (s2 ∷ ss) a) ⟩ + lang da1 (δ da1 s1 a) · lang da2 s2 ∪ lang (powA da2) (δs da2 (s2 ∷ ss) a) + ≈⟨ {!!} ⟩ + (lang da2 (δ da2 s2 a) ∪ lang (powA da2) (δs da2 ss a)) + ≈⟨ ≅sym {!!} ⟩ + (lang da1 (δ da1 s1 a) · lang da2 s2 ∪ lang da2 (δ da2 s2 a)) ∪ lang (powA da2) (δs da2 ss a) ∎ where open EqR (Bis _) -composeA-correct : ∀{i S1 S2} (da1 : DA S1) (da2 : DA S2) s1 s2 → +postulate + composeA-correct : ∀{i S1 S2} (da1 : DA S1) (da2 : DA S2) s1 s2 → lang (composeA da1 s2 da2) (s1 , []) ≅⟨ i ⟩≅ lang da1 s1 · lang da2 s2 -composeA-correct = {!!} open import Data.Maybe @@ -383,22 +354,14 @@ starA s0 da = finalToInitial (acceptingInitial s0 da) -acceptingInitial-just : ∀{i S} (s0 : S) (da : DA S) {s : S} → +postulate + acceptingInitial-just : ∀{i S} (s0 : S) (da : DA S) {s : S} → lang (acceptingInitial s0 da) (just s) ≅⟨ i ⟩≅ lang da s -acceptingInitial-just = {!!} - -acceptingInitial-nothing : ∀{i S} (s0 : S) (da : DA S) → + acceptingInitial-nothing : ∀{i S} (s0 : S) (da : DA S) → lang (acceptingInitial s0 da) nothing ≅⟨ i ⟩≅ ε ∪ lang da s0 -acceptingInitial-nothing = {!!} - - -starA-lemma : ∀{i S}(da : DA S)(s0 : S)(ss : List ∞ (Maybe S))→ + starA-lemma : ∀{i S}(da : DA S)(s0 : S)(ss : List ∞ (Maybe S))→ lang (starA s0 da) ss ≅⟨ i ⟩≅ lang (powA (acceptingInitial s0 da)) ss · (lang da s0) * -starA-lemma = {!!} - + starA-correct : ∀{i S} (da : DA S) (s0 : S) → + lang (starA s0 da) (nothing ∷ []) ≅⟨ i ⟩≅ (lang da s0) * -starA-correct : ∀{i S} (da : DA S) (s0 : S) → - lang (starA s0 da) (nothing ∷ []) ≅⟨ i ⟩≅ (lang da s0) * -starA-correct = {!!} -