Mercurial > hg > Members > kono > Proof > automaton
diff agda/derive.agda @ 45:e9edc777dc03
fix derive
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 22 Dec 2018 15:48:05 +0900 |
parents | aa15eff1aeb3 |
children | 7a0634a7c25a |
line wrap: on
line diff
--- a/agda/derive.agda Sat Dec 22 11:45:37 2018 +0900 +++ b/agda/derive.agda Sat Dec 22 15:48:05 2018 +0900 @@ -35,116 +35,20 @@ finiso←' (suc (suc ())) -test-r1 = < i0 > & < i1 > -test-r2 = regular-language (< i0 > & < i1 >) finIn2 ( i0 ∷ i1 ∷ [] ) -test-r3 = regular-language (< i0 > & < i1 >) finIn2 ( i0 ∷ i0 ∷ [] ) +tr1 = < i0 > & < i1 > +tr2 = regular-language (< i0 > & < i1 >) finIn2 ( i0 ∷ i1 ∷ [] ) +tr3 = regular-language (< i0 > & < i1 >) finIn2 ( i0 ∷ i0 ∷ [] ) +tr4 = (< i0 > * ) & < i1 > +tr5 = ( ((< i0 > * ) & < i1 > ) || ( < i1 > & ( ( < i1 > * ) || ( < i0 > * )) ) ) * -issub : {Σ : Set} {n : ℕ } → Regex Σ → Regex Σ → FiniteSet Σ {n} → Bool -issub (r *) s f = issub r s f -issub (r & r₁) s f = issub r s f ∨ issub r₁ s f -issub (r || r₁) s f = issub r s f ∨ issub r₁ s f -issub < x > < s > f with cmpi f x s -issub < x > < s > f | yes p = true -issub < x > < s > f | no ¬p = false -issub < x > s f = false - -record RegexSub {Σ : Set} (R : Regex Σ) {n : ℕ } (fin : FiniteSet Σ {n} ): Set where - field - Subterm : Regex Σ - sub : issub R Subterm fin ≡ true - -open import Data.Product +sb : { Σ : Set } → Regex Σ → List ( Regex Σ ) +sb (x *) = map (λ r → ( r & (x *) )) ( sb x ) ++ ( sb x ) +sb (x & y) = map (λ r → ( r & y )) ( sb x ) ++ ( sb y ) +sb (x || y) = sb x ++ sb y +sb < x > = < x > ∷ [] -regex2nfa : {Σ : Set} → Regex Σ → {n : ℕ } (fin : FiniteSet Σ {n}) → NAutomaton (Regex Σ) Σ × ( List (Regex Σ) ) -regex2nfa {Σ} (r *) fin = record { Nδ = Nδ ; Nstart = Nstart ; Nend = Nend } , {!!} where - nr0 = proj₁ (regex2nfa r fin) - Nδ : (Regex Σ) → Σ → (Regex Σ) → Bool - Nδ s0 i s1 = NAutomaton.Nδ nr0 s0 i s1 ∨ ( NAutomaton.Nend nr0 s0 ∧ NAutomaton.Nδ nr0 s0 i s1) - Nstart : (Regex Σ) → Bool - Nstart s0 = NAutomaton.Nstart nr0 s0 - Nend : (Regex Σ) → Bool - Nend s0 = NAutomaton.Nend nr0 s0 -regex2nfa {Σ} (r0 & r1) fin = record { Nδ = Nδ ; Nstart = Nstart ; Nend = Nend } , {!!} where - nr0 = proj₁ (regex2nfa r0 fin) - nr1 = proj₁ (regex2nfa r1 fin) - Nδ : (Regex Σ) → Σ → (Regex Σ) → Bool - Nδ s0 i s1 = NAutomaton.Nδ nr0 s0 i s1 ∨ ( NAutomaton.Nend nr0 s0 ∧ NAutomaton.Nδ nr1 s0 i s1 ) - Nstart : (Regex Σ) → Bool - Nstart s0 = NAutomaton.Nstart nr0 s0 ∨ ( NAutomaton.Nend nr0 s0 ∧ NAutomaton.Nstart nr1 s0 ) - Nend : (Regex Σ) → Bool - Nend s0 = NAutomaton.Nend nr0 s0 ∨ ( NAutomaton.Nend nr0 s0 ∧ NAutomaton.Nend nr1 s0 ) -regex2nfa {Σ} (r0 || r1) fin = record { Nδ = Nδ ; Nstart = Nstart ; Nend = Nend } , {!!} where - nr0 = proj₁ (regex2nfa r0 fin) - nr1 = proj₁ (regex2nfa r1 fin) - Nδ : (Regex Σ) → Σ → (Regex Σ) → Bool - Nδ s0 i s1 = NAutomaton.Nδ nr0 s0 i s1 ∨ NAutomaton.Nδ nr1 s0 i s1 - Nstart : (Regex Σ) → Bool - Nstart s0 = NAutomaton.Nstart nr0 s0 ∨ NAutomaton.Nstart nr1 s0 - Nend : (Regex Σ) → Bool - Nend s0 = NAutomaton.Nend nr0 s0 ∨ NAutomaton.Nend nr1 s0 -regex2nfa {Σ} < x > fin = record { Nδ = Nδ ; Nstart = Nstart ; Nend = Nend } , {!!} where - Nδ : (Regex Σ) → Σ → (Regex Σ) → Bool - Nδ r1 s r2 with cmpi fin s x - Nδ r1 s r2 | yes _ = true - Nδ r1 s r2 | no _ = false - Nstart : (Regex Σ) → Bool - Nstart = {!!} - Nstart < s > with cmpi fin s x - ... | yes _ = true - ... | no _ = false - Nstart _ = false - Nend : (Regex Σ) → Bool - Nend _ = false - -test-r4 = regex2nfa (< i0 > & < i1 >) finIn2 - -testr5 = Naccept ( proj₁ test-r4) {!!} ( i0 ∷ i1 ∷ [] ) - -rfin : {Σ : Set} → (s : List ( Regex Σ)) → FiniteSet (Regex Σ ) {length s } -rfin {Σ} s = record { - Q←F = Q←F' - ; F←Q = F←Q' - ; finiso→ = finiso→' - ; finiso← = finiso←' - } where - Q←F' : Fin (length s) → Regex Σ - Q←F' = {!!} - F←Q' : Regex Σ → Fin (length s) - F←Q' = {!!} - finiso→' : (q : Regex Σ) → Q←F' (F←Q' q) ≡ q - finiso→' = {!!} - finiso←' : (f : Fin (length s)) → F←Q' (Q←F' f) ≡ f - finiso←' = {!!} - -reglang⇔n=regex2nfa : {Σ : Set} → {n m : ℕ } (fin : FiniteSet Σ {n}) - → ( regex : Regex Σ ) - → ( In : List Σ ) - → regular-language regex fin In ≡ Naccept {Regex Σ} {_} ( proj₁ ( regex2nfa {Σ} regex fin )) - (rfin (proj₂ ( regex2nfa {Σ} regex fin ) )) In -reglang⇔n=regex2nfa {Σ} {n} {m} fin (regex *) In = {!!} -reglang⇔n=regex2nfa {Σ} {n} {m} fin (regex & regex₁) In = {!!} -reglang⇔n=regex2nfa {Σ} {n} {m} fin (regex || regex₁) In = {!!} -reglang⇔n=regex2nfa {Σ} {n} {m} fin < x > In = {!!} - - -derivatives : {Σ : Set} → Σ → Regex Σ → Regex Σ -derivatives x (r *) = {!!} -derivatives x (r & r₁) = {!!} -derivatives x (r || r₁) = {!!} -derivatives x < x₁ > = {!!} - -daccept : {Σ : Set} → ( r : Regex Σ ) → {n : ℕ } (fin : FiniteSet Σ {n}) → ( s : List Σ ) → Bool -daccept r fin [] = {!!} -daccept r fin (h ∷ t) = regular-language ( derivatives h r ) fin t - -lemma1 : {Σ : Set} → ( r : Regex Σ ) → {n : ℕ } (fin : FiniteSet Σ {n}) → ( s : List Σ ) - → regular-language r fin s ≡ true → daccept r fin s ≡ true -lemma1 = {!!} - -lemma2 : {Σ : Set} → ( r : Regex Σ ) → {n : ℕ } (fin : FiniteSet Σ {n}) → ( s : List Σ ) - → daccept r fin s ≡ true → regular-language r fin s ≡ true -lemma2 = {!!} - - - +nth : { S : Set } → (x : List S ) → Fin ( length x ) → S +nth [] () +nth (s ∷ t) zero = s +nth (_ ∷ t) (suc f) = nth t f