Mercurial > hg > Members > kono > Proof > automaton
view automaton-in-agda/src/derive.agda @ 274:1c8ed1220489
fixes
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 18 Dec 2021 16:27:46 +0900 |
parents | f60c1041ae8e |
children | 407684f806e4 |
line wrap: on
line source
{-# OPTIONS --allow-unsolved-metas #-} open import Relation.Binary.PropositionalEquality hiding ( [_] ) open import Relation.Nullary using (¬_; Dec; yes; no) open import Data.List hiding ( [_] ) open import finiteSet module derive ( Σ : Set) ( fin : FiniteSet Σ ) ( eq? : (x y : Σ) → Dec (x ≡ y)) where -- open import nfa open import Data.Nat -- open import Data.Nat hiding ( _<_ ; _>_ ) -- open import Data.Fin hiding ( _<_ ) open import finiteSetUtil open import automaton open import logic open import regex open FiniteSet -- whether a regex accepts empty input -- empty? : Regex Σ → Bool empty? ε = true empty? φ = false empty? (x *) = true empty? (x & y) = empty? x /\ empty? y empty? (x || y) = empty? x \/ empty? y empty? < x > = false derivative : Regex Σ → Σ → Regex Σ derivative ε s = φ derivative φ s = φ derivative (x *) s with derivative x s ... | ε = x * ... | φ = φ ... | t = t & (x *) derivative (x & y) s with empty? x ... | true with derivative x s | derivative y s ... | ε | φ = φ ... | ε | t = y || t ... | φ | t = t ... | x1 | φ = x1 & y ... | x1 | y1 = (x1 & y) || y1 derivative (x & y) s | false with derivative x s ... | ε = y ... | φ = φ ... | t = t & y derivative (x || y) s with derivative x s | derivative y s ... | φ | y1 = y1 ... | x1 | φ = x1 ... | x1 | y1 = x1 || y1 derivative < x > s with eq? x s ... | yes _ = ε ... | no _ = φ data regex-states (x : Regex Σ ) : Regex Σ → Set where unit : regex-states x x derive : { y : Regex Σ } → regex-states x y → (s : Σ) → regex-states x ( derivative y s ) record Derivative (x : Regex Σ ) : Set where field state : Regex Σ is-derived : regex-states x state open Derivative open import Data.Fin hiding (_<_) -- derivative generates (x & y) || ... form. y and x part is a substerm of original regex -- since subterm is finite, only finite number of state is generated for each operator -- this does not work, becuase it depends on input sequences -- finite-derivative : (r : Regex Σ) → FiniteSet Σ → FiniteSet (Derivative r) -- order : Regex Σ → ℕ -- decline-derive : (x : Regex Σ ) (i : Σ ) → 0 < order x → order (derivative x i) < order x -- is not so easy -- in case of automaton, number of derivative is limited by iteration of input length, so it is finite. -- so we cannot say derived automaton is finite i.e. regex-match is regular language now regex→automaton : (r : Regex Σ) → Automaton (Derivative r) Σ regex→automaton r = record { δ = λ d s → record { state = derivative (state d) s ; is-derived = derive-step d s} ; aend = λ d → empty? (state d) } where derive-step : (d0 : Derivative r) → (s : Σ) → regex-states r (derivative (state d0) s) derive-step d0 s = derive (is-derived d0) s regex-match : (r : Regex Σ) → (List Σ) → Bool regex-match ex is = accept ( regex→automaton ex ) record { state = ex ; is-derived = unit } is open import Relation.Binary.Definitions cmp-regex : (x y : Regex Σ) → Dec ( x ≡ y ) cmp-regex ε ε = yes refl cmp-regex ε φ = no (λ ()) cmp-regex ε (y *) = no (λ ()) cmp-regex ε (y & y₁) = no (λ ()) cmp-regex ε (y || y₁) = no (λ ()) cmp-regex ε < x > = no (λ ()) cmp-regex φ ε = no (λ ()) cmp-regex φ φ = yes refl cmp-regex φ (y *) = no (λ ()) cmp-regex φ (y & y₁) = no (λ ()) cmp-regex φ (y || y₁) = no (λ ()) cmp-regex φ < x > = no (λ ()) cmp-regex (x *) ε = no (λ ()) cmp-regex (x *) φ = no (λ ()) cmp-regex (x *) (y *) with cmp-regex x y ... | yes refl = yes refl ... | no ne = no (λ x → ne (cmp1 x)) where cmp1 : (x *) ≡ (y *) → x ≡ y cmp1 refl = refl cmp-regex (x *) (y & y₁) = no (λ ()) cmp-regex (x *) (y || y₁) = no (λ ()) cmp-regex (x *) < x₁ > = no (λ ()) cmp-regex (x & x₁) ε = no (λ ()) cmp-regex (x & x₁) φ = no (λ ()) cmp-regex (x & x₁) (y *) = no (λ ()) cmp-regex (x & x₁) (y & y₁) with cmp-regex x y | cmp-regex x₁ y₁ ... | yes refl | yes refl = yes refl ... | no ne | _ = no (λ x → ne (cmp1 x)) where cmp1 : x & x₁ ≡ y & y₁ → x ≡ y cmp1 refl = refl ... | _ | no ne = no (λ x → ne (cmp1 x)) where cmp1 : x & x₁ ≡ y & y₁ → x₁ ≡ y₁ cmp1 refl = refl cmp-regex (x & x₁) (y || y₁) = no (λ ()) cmp-regex (x & x₁) < x₂ > = no (λ ()) cmp-regex (x || x₁) ε = no (λ ()) cmp-regex (x || x₁) φ = no (λ ()) cmp-regex (x || x₁) (y *) = no (λ ()) cmp-regex (x || x₁) (y & y₁) = no (λ ()) cmp-regex (x || x₁) (y || y₁) with cmp-regex x y | cmp-regex x₁ y₁ ... | yes refl | yes refl = yes refl ... | no ne | _ = no (λ x → ne (cmp1 x)) where cmp1 : x || x₁ ≡ y || y₁ → x ≡ y cmp1 refl = refl ... | _ | no ne = no (λ x → ne (cmp1 x)) where cmp1 : x || x₁ ≡ y || y₁ → x₁ ≡ y₁ cmp1 refl = refl cmp-regex (x || x₁) < x₂ > = no (λ ()) cmp-regex < x > ε = no (λ ()) cmp-regex < x > φ = no (λ ()) cmp-regex < x > (y *) = no (λ ()) cmp-regex < x > (y & y₁) = no (λ ()) cmp-regex < x > (y || y₁) = no (λ ()) cmp-regex < x > < x₁ > with equal? fin x x₁ | inspect ( equal? fin x ) x₁ ... | false | record { eq = eq } = no (λ x → ¬-bool eq (cmp1 x)) where cmp1 : < x > ≡ < x₁ > → equal? fin x x₁ ≡ true cmp1 refl = equal?-refl fin ... | true | record { eq = eq } with equal→refl fin eq ... | refl = yes refl insert : List (Regex Σ) → (Regex Σ) → List (Regex Σ) insert [] k = k ∷ [] insert (x ∷ t) k with cmp-regex k x ... | no n = x ∷ (insert t k) ... | yes y = x ∷ t regex-derive : List (Regex Σ) → List (Regex Σ) regex-derive t = regex-derive0 t t where regex-derive1 : Regex Σ → List Σ → List (Regex Σ) → List (Regex Σ) regex-derive1 x [] t = t regex-derive1 x (i ∷ t) r = regex-derive1 x t (insert r (derivative x i)) regex-derive0 : List (Regex Σ) → List (Regex Σ) → List (Regex Σ) regex-derive0 [] t = t regex-derive0 (x ∷ r) t = regex-derive0 r (regex-derive1 x (to-list fin (λ _ → true)) t) -- -- if (Derivative r is finite, regex→automaton is finite -- drive-is-finite : (r : Regex Σ) → FiniteSet (Derivative r) drive-is-finite ε = {!!} drive-is-finite φ = {!!} drive-is-finite (r *) = {!!} where d1 : FiniteSet (Derivative r ) d1 = drive-is-finite r drive-is-finite (r & r₁) = {!!} drive-is-finite (r || r₁) = {!!} drive-is-finite < x > = {!!}