Mercurial > hg > Members > kono > Proof > automaton
view automaton-in-agda/src/chap0.agda @ 392:23db567b4098
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 27 Jul 2023 09:03:13 +0900 |
parents | 3fa72793620b |
children | af8f630b7e60 |
line wrap: on
line source
module chap0 where open import Data.List open import Data.Nat hiding (_⊔_) -- open import Data.Integer hiding (_⊔_ ; _≟_ ; _+_ ) open import Data.Product A : List ℕ A = 1 ∷ 2 ∷ [] data Literal : Set where x : Literal y : Literal z : Literal B : List Literal B = x ∷ y ∷ z ∷ [] ListProduct : {A B : Set } → List A → List B → List ( A × B ) ListProduct = {!!} ex05 : List ( ℕ × Literal ) ex05 = ListProduct A B -- (1 , x) ∷ (1 , y) ∷ (1 , z) ∷ (2 , x) ∷ (2 , y) ∷ (2 , z) ∷ [] ex06 : List ( ℕ × Literal × ℕ ) ex06 = ListProduct A (ListProduct B A) ex07 : Set ex07 = ℕ × ℕ data ex08-f : ℕ → ℕ → Set where ex08f0 : ex08-f 0 1 ex08f1 : ex08-f 1 2 ex08f2 : ex08-f 2 3 ex08f3 : ex08-f 3 4 ex08f4 : ex08-f 4 0 data ex09-g : ℕ → ℕ → ℕ → ℕ → Set where ex09g0 : ex09-g 0 1 2 3 ex09g1 : ex09-g 1 2 3 0 ex09g2 : ex09-g 2 3 0 1 ex09g3 : ex09-g 3 0 1 2 open import Data.Nat.DivMod open import Relation.Binary.PropositionalEquality open import Relation.Binary.Core open import Data.Nat.Properties -- _%_ : ℕ → ℕ → ℕ -- _%_ a b with <-cmp a b -- _%_ a b | tri< a₁ ¬b ¬c = a -- _%_ a b | tri≈ ¬a b₁ ¬c = 0 -- _%_ a b | tri> ¬a ¬b c = _%_ (a - b) b _≡7_ : ℕ → ℕ → Set n ≡7 m = (n % 7) ≡ (m % 7 ) refl7 : { n : ℕ} → n ≡7 n refl7 = {!!} sym7 : { n m : ℕ} → n ≡7 m → m ≡7 n sym7 = {!!} trans7 : { n m o : ℕ} → n ≡7 m → m ≡7 o → n ≡7 o trans7 = {!!} open import Level renaming ( zero to Zero ; suc to Suc ) record Graph { v v' : Level } : Set (Suc v ⊔ Suc v' ) where field vertex : Set v edge : vertex → vertex → Set v' open Graph -- open import Data.Fin hiding ( _≟_ ) open import Data.Empty open import Relation.Nullary open import Data.Unit hiding ( _≟_ ) -- data Dec (P : Set) : Set where -- yes : P → Dec P -- no : ¬ P → Dec P -- -- _≟_ : (s t : ℕ ) → Dec ( s ≡ t ) -- ¬ A = A → ⊥ _n≟_ : (s t : ℕ ) → Dec ( s ≡ t ) zero n≟ zero = yes refl zero n≟ suc t = no (λ ()) suc s n≟ zero = no (λ ()) suc s n≟ suc t with s n≟ t ... | yes refl = yes refl ... | no n = no (λ k → n (tt1 k) ) where tt1 : suc s ≡ suc t → s ≡ t tt1 refl = refl open import Data.Bool hiding ( _≟_ ) conn : List ( ℕ × ℕ ) → ℕ → ℕ → Bool conn [] _ _ = false conn ((n1 , m1 ) ∷ t ) n m with n ≟ n1 | m ≟ m1 conn ((n1 , m1) ∷ t) n m | yes refl | yes refl = true conn ((n1 , m1) ∷ t) n m | _ | _ = conn t n m list012a : List ( ℕ × ℕ ) list012a = (1 , 2) ∷ (2 , 3) ∷ (3 , 4) ∷ (4 , 5) ∷ (5 , 1) ∷ [] graph012a : Graph {Zero} {Zero} graph012a = record { vertex = ℕ ; edge = λ s t → (conn list012a s t) ≡ true } data edge012b : ℕ → ℕ → Set where e012b-1 : edge012b 1 2 e012b-2 : edge012b 1 3 e012b-3 : edge012b 1 4 e012b-4 : edge012b 2 3 e012b-5 : edge012b 2 4 e012b-6 : edge012b 3 4 edge? : (E : ℕ → ℕ → Set) → ( a b : ℕ ) → Set edge? E a b = Dec ( E a b ) lemma3 : ( a b : ℕ ) → edge? edge012b a b lemma3 1 2 = yes e012b-1 lemma3 1 3 = yes e012b-2 lemma3 1 4 = yes e012b-3 lemma3 2 3 = yes e012b-4 lemma3 2 4 = yes e012b-5 lemma3 3 4 = yes e012b-6 lemma3 1 1 = no ( λ () ) lemma3 2 1 = no ( λ () ) lemma3 2 2 = no ( λ () ) lemma3 3 1 = no ( λ () ) lemma3 3 2 = no ( λ () ) lemma3 3 3 = no ( λ () ) lemma3 0 _ = no ( λ () ) lemma3 _ 0 = no ( λ () ) lemma3 _ (suc (suc (suc (suc (suc _))))) = no ( λ () ) lemma3 (suc (suc (suc (suc _)))) _ = no ( λ () ) graph012b : Graph {Zero} {Zero} graph012b = record { vertex = ℕ ; edge = edge012b } data connected { V : Set } ( E : V -> V -> Set ) ( x y : V ) : Set where direct : E x y → connected E x y indirect : ( z : V ) -> E x z → connected {V} E z y → connected E x y lemma1 : connected ( edge graph012a ) 1 2 lemma1 = direct refl where lemma1-2 : connected ( edge graph012a ) 1 3 lemma1-2 = indirect 2 refl (direct refl ) lemma2 : connected ( edge graph012b ) 1 2 lemma2 = direct e012b-1 reachable : { V : Set } ( E : V -> V -> Set ) ( x y : V ) -> Set reachable {V} E X Y = Dec ( connected {V} E X Y ) dag : { V : Set } ( E : V -> V -> Set ) -> Set dag {V} E = ∀ (n : V) → ¬ ( connected E n n ) open import Function lemma4 : ¬ ( dag ( edge graph012a) ) lemma4 neg = neg 1 $ indirect 2 refl $ indirect 3 refl $ indirect 4 refl $ indirect 5 refl $ direct refl dgree : List ( ℕ × ℕ ) → ℕ → ℕ dgree [] _ = 0 dgree ((e , e1) ∷ t) e0 with e0 ≟ e | e0 ≟ e1 dgree ((e , e1) ∷ t) e0 | yes _ | _ = 1 + (dgree t e0) dgree ((e , e1) ∷ t) e0 | _ | yes p = 1 + (dgree t e0) dgree ((e , e1) ∷ t) e0 | no _ | no _ = dgree t e0 dgree-c : {t : Set} → List ( ℕ × ℕ ) → ℕ → (ℕ → t) → t dgree-c {t} [] e0 next = next 0 dgree-c {t} ((e , e1) ∷ tail ) e0 next with e0 ≟ e | e0 ≟ e1 ... | yes _ | _ = dgree-c tail e0 ( λ n → next (n + 1 )) ... | _ | yes _ = dgree-c tail e0 ( λ n → next (n + 1 )) ... | no _ | no _ = dgree-c tail e0 next lemma6 = dgree list012a 2 lemma7 = dgree-c list012a 2 ( λ n → n ) even2 : (n : ℕ ) → n % 2 ≡ 0 → (n + 2) % 2 ≡ 0 even2 0 refl = refl even2 1 () even2 (suc (suc n)) eq = trans ([a+n]%n≡a%n n _) eq -- [a+n]%n≡a%n : ∀ a n → (a + suc n) % suc n ≡ a % suc n sum-of-dgree : ( g : List ( ℕ × ℕ )) → ℕ sum-of-dgree [] = 0 sum-of-dgree ((e , e1) ∷ t) = 2 + sum-of-dgree t dgree-even : ( g : List ( ℕ × ℕ )) → sum-of-dgree g % 2 ≡ 0 dgree-even [] = refl dgree-even ((e , e1) ∷ t) = begin sum-of-dgree ((e , e1) ∷ t) % 2 ≡⟨⟩ (2 + sum-of-dgree t ) % 2 ≡⟨ cong ( λ k → k % 2 ) ( +-comm 2 (sum-of-dgree t) ) ⟩ (sum-of-dgree t + 2) % 2 ≡⟨ [a+n]%n≡a%n (sum-of-dgree t) _ ⟩ sum-of-dgree t % 2 ≡⟨ dgree-even t ⟩ 0 ∎ where open ≡-Reasoning