Mercurial > hg > Members > kono > Proof > automaton
view automaton-in-agda/src/derive.agda @ 392:23db567b4098
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 27 Jul 2023 09:03:13 +0900 |
parents | 101080136450 |
children | 2ff6519fc270 |
line wrap: on
line source
{-# OPTIONS --allow-unsolved-metas #-} open import Relation.Binary.PropositionalEquality hiding ( [_] ) open import Relation.Nullary using (¬_; Dec; yes; no) open import Data.List hiding ( [_] ) open import Data.Empty open import finiteSet open import fin module derive ( Σ : Set) ( fin : FiniteSet Σ ) ( eq? : (x y : Σ) → Dec (x ≡ y)) where open import automaton open import logic open import regex -- whether a regex accepts empty input -- empty? : Regex Σ → Bool empty? ε = true empty? φ = false empty? (x *) = true empty? (x & y) = empty? x /\ empty? y empty? (x || y) = empty? x \/ empty? y empty? < x > = false derivative : Regex Σ → Σ → Regex Σ derivative ε s = φ derivative φ s = φ derivative (x *) s with derivative x s ... | ε = x * ... | φ = φ ... | t = t & (x *) derivative (x & y) s with empty? x ... | true with derivative x s | derivative y s ... | ε | φ = φ ... | ε | t = t || y ... | φ | t = t ... | x1 | φ = x1 & y ... | x1 | y1 = (x1 & y) || y1 derivative (x & y) s | false with derivative x s ... | ε = y ... | φ = φ ... | t = t & y derivative (x || y) s with derivative x s | derivative y s ... | φ | y1 = y1 ... | x1 | φ = x1 ... | x1 | y1 = x1 || y1 derivative < x > s with eq? x s ... | yes _ = ε ... | no _ = φ data regex-states (x : Regex Σ ) : Regex Σ → Set where unit : { z : Regex Σ} → z ≡ x → regex-states x z derive : { y z : Regex Σ } → regex-states x y → (s : Σ) → z ≡ derivative y s → regex-states x z record Derivative (x : Regex Σ ) : Set where field state : Regex Σ is-derived : regex-states x state open Derivative derive-step : (r : Regex Σ) (d0 : Derivative r) → (s : Σ) → regex-states r (derivative (state d0) s) derive-step r d0 s = derive (is-derived d0) s refl regex→automaton : (r : Regex Σ) → Automaton (Derivative r) Σ regex→automaton r = record { δ = λ d s → record { state = derivative (state d) s ; is-derived = derive (is-derived d) s refl } ; aend = λ d → empty? (state d) } regex-match : (r : Regex Σ) → (List Σ) → Bool regex-match ex is = accept ( regex→automaton ex ) record { state = ex ; is-derived = unit refl } is -- open import Relation.Binary.HeterogeneousEquality as HE using (_≅_ ) -- open import nfa open import Data.Nat open import Data.Nat.Properties hiding ( eq? ) open import nat open import finiteSetUtil open FiniteSet open import Data.Fin hiding (_<_ ; _≤_ ; pred ) -- finiteness of derivative -- term generate x & y for each * and & only once -- rank : Regex → ℕ -- r₀ & r₁ ... r -- generated state is a subset of the term set open import Relation.Binary.Definitions open _∧_ fb20 : {r s r₁ s₁ : Regex Σ} → r & r₁ ≡ s & s₁ → (r ≡ s ) ∧ (r₁ ≡ s₁ ) fb20 refl = ⟪ refl , refl ⟫ fb21 : {r s r₁ s₁ : Regex Σ} → r || r₁ ≡ s || s₁ → (r ≡ s ) ∧ (r₁ ≡ s₁ ) fb21 refl = ⟪ refl , refl ⟫ rg-eq? : (r s : Regex Σ) → Dec ( r ≡ s ) rg-eq? ε ε = yes refl rg-eq? ε φ = no (λ ()) rg-eq? ε (s *) = no (λ ()) rg-eq? ε (s & s₁) = no (λ ()) rg-eq? ε (s || s₁) = no (λ ()) rg-eq? ε < x > = no (λ ()) rg-eq? φ ε = no (λ ()) rg-eq? φ φ = yes refl rg-eq? φ (s *) = no (λ ()) rg-eq? φ (s & s₁) = no (λ ()) rg-eq? φ (s || s₁) = no (λ ()) rg-eq? φ < x > = no (λ ()) rg-eq? (r *) ε = no (λ ()) rg-eq? (r *) φ = no (λ ()) rg-eq? (r *) (s *) with rg-eq? r s ... | yes eq = yes ( cong (_*) eq) ... | no ne = no (λ eq → ne (fb10 eq) ) where fb10 : {r s : Regex Σ} → (r *) ≡ (s *) → r ≡ s fb10 refl = refl rg-eq? (r *) (s & s₁) = no (λ ()) rg-eq? (r *) (s || s₁) = no (λ ()) rg-eq? (r *) < x > = no (λ ()) rg-eq? (r & r₁) ε = no (λ ()) rg-eq? (r & r₁) φ = no (λ ()) rg-eq? (r & r₁) (s *) = no (λ ()) rg-eq? (r & r₁) (s & s₁) with rg-eq? r s | rg-eq? r₁ s₁ ... | yes y | yes y₁ = yes ( cong₂ _&_ y y₁) ... | yes y | no n = no (λ eq → n (proj2 (fb20 eq) )) ... | no n | yes y = no (λ eq → n (proj1 (fb20 eq) )) ... | no n | no n₁ = no (λ eq → n (proj1 (fb20 eq) )) rg-eq? (r & r₁) (s || s₁) = no (λ ()) rg-eq? (r & r₁) < x > = no (λ ()) rg-eq? (r || r₁) ε = no (λ ()) rg-eq? (r || r₁) φ = no (λ ()) rg-eq? (r || r₁) (s *) = no (λ ()) rg-eq? (r || r₁) (s & s₁) = no (λ ()) rg-eq? (r || r₁) (s || s₁) with rg-eq? r s | rg-eq? r₁ s₁ ... | yes y | yes y₁ = yes ( cong₂ _||_ y y₁) ... | yes y | no n = no (λ eq → n (proj2 (fb21 eq) )) ... | no n | yes y = no (λ eq → n (proj1 (fb21 eq) )) ... | no n | no n₁ = no (λ eq → n (proj1 (fb21 eq) )) rg-eq? (r || r₁) < x > = no (λ ()) rg-eq? < x > ε = no (λ ()) rg-eq? < x > φ = no (λ ()) rg-eq? < x > (s *) = no (λ ()) rg-eq? < x > (s & s₁) = no (λ ()) rg-eq? < x > (s || s₁) = no (λ ()) rg-eq? < x > < x₁ > with eq? x x₁ ... | yes y = yes (cong <_> y) ... | no n = no (λ eq → n (fb11 eq)) where fb11 : < x > ≡ < x₁ > → x ≡ x₁ fb11 refl = refl rank : (r : Regex Σ) → ℕ rank ε = 0 rank φ = 0 rank (r *) = suc (rank r) rank (r & r₁) = suc (max (rank r) (rank r₁)) rank (r || r₁) = max (rank r) (rank r₁) rank < x > = 0 data SB : (r s : Regex Σ) → Set where sunit : {r : Regex Σ} → SB r r sub|1 : {x y z : Regex Σ} → SB x z → SB (x || y) z sub|2 : {x y z : Regex Σ} → SB y z → SB (x || y) z sub* : {x y : Regex Σ} → SB x y → SB (x *) y sub&1 : (x y z : Regex Σ) → SB x z → SB (x & y) z sub&2 : (x y z : Regex Σ) → SB y z → SB (x & y) z sub*& : (x y : Regex Σ) → rank x < rank y → SB y x → SB (y *) (x & (y *)) sub&& : (x y z : Regex Σ) → rank z < rank (x & z) → SB (x & y) z → SB (x & y) (z & y) record ISB (r : Regex Σ) : Set where field s : Regex Σ is-sub : SB r s open import bijection using ( InjectiveF ; Is ) finISB : (r : Regex Σ) → FiniteSet (ISB r) finISB ε = record { finite = 1 ; Q←F = λ _ → record { s = ε ; is-sub = sunit } ; F←Q = λ _ → # 0 ; finiso→ = fb01 ; finiso← = fin1≡0 } where fb00 : (q : ISB ε) → record { s = ε ; is-sub = sunit } ≡ q fb00 record { s = .ε ; is-sub = sunit } = refl fb01 : (q : ISB ε) → record { s = ε ; is-sub = sunit } ≡ q fb01 record { s = .ε ; is-sub = sunit } = refl finISB φ = record { finite = 1 ; Q←F = λ _ → record { s = φ ; is-sub = sunit } ; F←Q = λ _ → # 0 ; finiso→ = fb01 ; finiso← = fin1≡0 } where fb00 : (q : ISB φ) → record { s = φ ; is-sub = sunit } ≡ q fb00 record { s = .φ ; is-sub = sunit } = refl fb01 : (q : ISB φ) → record { s = φ ; is-sub = sunit } ≡ q fb01 record { s = .φ ; is-sub = sunit } = refl finISB < s > = record { finite = 1 ; Q←F = λ _ → record { s = < s > ; is-sub = sunit } ; F←Q = λ _ → # 0 ; finiso→ = fb01 ; finiso← = fin1≡0 } where fb00 : (q : ISB < s >) → record { s = < s > ; is-sub = sunit } ≡ q fb00 record { s = < s > ; is-sub = sunit } = refl fb01 : (q : ISB < s >) → record { s = < s > ; is-sub = sunit } ≡ q fb01 record { s = < s > ; is-sub = sunit } = refl finISB (x || y) = iso-fin (fin-∨1 (fin-∨ (finISB x) (finISB y))) record { fun← = fb00 ; fun→ = fb01 ; fiso← = {!!} ; fiso→ = {!!} } where fb00 : ISB (x || y) → One ∨ ISB x ∨ ISB y fb00 record { s = .(x || y) ; is-sub = sunit } = case1 one fb00 record { s = s ; is-sub = (sub|1 is-sub) } = case2 (case1 record { s = s ; is-sub = is-sub } ) fb00 record { s = s ; is-sub = (sub|2 is-sub) } = case2 (case2 record { s = s ; is-sub = is-sub } ) fb01 : One ∨ ISB x ∨ ISB y → ISB (x || y) fb01 (case1 one) = record { s = (x || y) ; is-sub = sunit } fb01 (case2 (case1 record { s = s ; is-sub = is-sub })) = record { s = s ; is-sub = sub|1 is-sub } fb01 (case2 (case2 record { s = s ; is-sub = is-sub })) = record { s = s ; is-sub = sub|2 is-sub } fb02 : (x : One ∨ ISB x ∨ ISB y) → fb00 (fb01 x) ≡ x fb02 (case1 one) = refl fb02 (case2 (case1 record { s = s ; is-sub = is-sub })) = refl fb02 (case2 (case2 record { s = s ; is-sub = is-sub })) = refl finISB (x & y) = iso-fin (fin-∨ (inject-fin (fin-∧ (finISB x) (finISB y)) fi {!!}) (fin-∨1 (fin-∨ (finISB x) (finISB y)))) {!!} where record Z : Set where field x1 y1 z : Regex Σ lt : rank z < suc (max (rank x1) (rank z)) is-sub : SB x1 z fb00 : ISB (x & y) → {!!} fb00 record { s = .(x & y) ; is-sub = sunit } = {!!} fb00 record { s = s ; is-sub = (sub&1 .x .y .s is-sub) } = {!!} fb00 record { s = s ; is-sub = (sub&2 .x .y .s is-sub) } = {!!} fb00 record { s = (z & y) ; is-sub = (sub&& x y z lt is-sub) } = {!!} fi : InjectiveF Z (ISB x ∧ ISB y) fi = record { f = f ; inject = {!!} } where f : Z → ISB x ∧ ISB y f z = ⟪ record { s = Z.x1 z ; is-sub = {!!} } , {!!} ⟫ finISB (x *) = iso-fin (fin-∨ (inject-fin (finISB x) fi {!!} ) (fin-∨1 (finISB x) )) record { fun← = fb00 } where record Z : Set where field z : Regex Σ lt : rank z < rank x is-sub : SB x z fi : InjectiveF Z (ISB x) fi = record { f = f ; inject = {!!} } where f : Z → ISB x f z = record { s = Z.z z ; is-sub = Z.is-sub z } fb00 : ISB (x *) → {!!} fb00 record { s = .(x *) ; is-sub = sunit } = {!!} fb00 record { s = s ; is-sub = (sub* is-sub) } = {!!} fb00 record { s = (z & (x *)) ; is-sub = (sub*& z x lt is-sub) } = case1 record { z = z ; is-sub = is-sub ; lt = lt } toSB : (r : Regex Σ) → ISB r → Bool toSB r record { s = s ; is-sub = is-sub } with rg-eq? r s ... | yes _ = true ... | no _ = false sbempty? : (r : Regex Σ) → (ISB r → Bool) → Bool sbempty? ε f with f record { s = ε ; is-sub = sunit } ... | true = true ... | false = false sbempty? φ f = false sbempty? (r *) f with f record { s = r * ; is-sub = sunit } ... | true = true ... | false = false sbempty? (r & r₁) f with f record { s = r & r₁ ; is-sub = sunit } ... | false = false ... | true = empty? r /\ empty? r₁ sbempty? (r || r₁) f with f record { s = r || r₁ ; is-sub = sunit } ... | false = false ... | true = empty? r \/ empty? r₁ sbempty? < x > f = false sbderive : (r : Regex Σ) → (ISB r → Bool) → Σ → ISB r → Bool sbderive ε f s record { s = .ε ; is-sub = sunit } = ? sbderive φ f s record { s = t ; is-sub = is-sub } = false sbderive (r *) f s record { s = t ; is-sub = is-sub } = ? sbderive (r & r₁) f s record { s = t ; is-sub = is-sub } = ? sbderive (r || r₁) f s record { s = .(r || r₁) ; is-sub = sunit } = ? sbderive (r || r₁) f s record { s = t ; is-sub = (sub|1 is-sub) } = ? sbderive (r || r₁) f s record { s = t ; is-sub = (sub|2 is-sub) } = ? sbderive < x > f s record { s = t ; is-sub = is-sub } = ? -- finDerive : (r : Regex Σ) → FiniteSet (Derived r) -- this is not correct because it contains s || s || s || ..... finSBTA : (r : Regex Σ) → FiniteSet (ISB r → Bool) finSBTA r = fin→ ( finISB r ) regex→automaton1 : (r : Regex Σ) → Automaton (ISB r → Bool) Σ regex→automaton1 r = record { δ = sbderive r ; aend = sbempty? r } regex-match1 : (r : Regex Σ) → (List Σ) → Bool regex-match1 r is = accept ( regex→automaton1 r ) (λ sb → toSB r sb) is derive-is-regex-language : (r : Regex Σ) → (x : List Σ )→ regex-language r eq? x ≡ regex-match r x derive-is-regex-language ε [] = refl derive-is-regex-language ε (x ∷ x₁) = ? derive-is-regex-language φ [] = refl derive-is-regex-language φ (x ∷ x₁) = ? derive-is-regex-language (r *) x = ? derive-is-regex-language (r & r₁) x = ? derive-is-regex-language (r || r₁) x = ? derive-is-regex-language < x₁ > [] = refl derive-is-regex-language < x₁ > (x ∷ []) with eq? x₁ x ... | yes _ = refl ... | no _ = refl derive-is-regex-language < x₁ > (x ∷ x₂ ∷ x₃) = ? where -- rg01 (eq? x₁ x) where rg01 : Dec ( x₁ ≡ x ) → regex-language < x₁ > eq? (x ∷ x₂ ∷ x₃ ) ≡ false rg01 (yes eq) = refl rg01 (no neq) = refl rg03 : (x s : Σ) → (derivative < x > s ≡ ε ) ∨ (derivative < x > s ≡ φ ) rg03 x s with eq? x s ... | yes _ = case1 refl ... | no _ = case2 refl rg02 : regex-match < x₁ > (x ∷ x₂ ∷ x₃ ) ≡ false rg02 with rg03 x₁ x ... | case1 eq = ? ... | case2 eq = ? -- immediate with eq? x₁ x generates an error w != eq? a b of type Dec (a ≡ b) derive=ISB : (r : Regex Σ) → (x : List Σ )→ regex-match r x ≡ regex-match1 r x derive=ISB ε [] = refl derive=ISB ε (x ∷ x₁) = ? derive=ISB φ [] = refl derive=ISB φ (x ∷ x₁) = ? derive=ISB (r *) x = ? derive=ISB (r & r₁) x = ? derive=ISB (r || r₁) x = ? derive=ISB < x₁ > [] = refl derive=ISB < x₁ > (x ∷ []) with eq? x₁ x ... | yes _ = ? ... | no _ = refl derive=ISB < x₁ > (x ∷ x₂ ∷ x₃) = ? ISB-is-regex-language : (r : Regex Σ) → (x : List Σ )→ regex-language r eq? x ≡ regex-match1 r x ISB-is-regex-language r x = trans ( derive-is-regex-language r x ) (derive=ISB r x)