Mercurial > hg > Members > kono > Proof > automaton
view automaton-in-agda/src/cfg1.agda @ 294:248711134141
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 29 Dec 2021 19:08:28 +0900 |
parents | 42563cc6afdf |
children | 91781b7c65a8 |
line wrap: on
line source
module cfg1 where open import Level renaming ( suc to succ ; zero to Zero ) open import Data.Nat hiding ( _≟_ ) -- open import Data.Fin -- open import Data.Product open import Data.List open import Data.Maybe -- open import Data.Bool using ( Bool ; true ; false ; _∧_ ; _∨_ ) open import Relation.Binary.PropositionalEquality hiding ( [_] ) open import Relation.Nullary using (¬_; Dec; yes; no) open import logic -- -- Java → Java Byte Code -- -- CFG Stack Machine (PDA) -- data Node (Symbol : Set) : Set where T : Symbol → Node Symbol N : Symbol → Node Symbol data Seq (Symbol : Set) : Set where _,_ : Symbol → Seq Symbol → Seq Symbol _. : Symbol → Seq Symbol Error : Seq Symbol data Body (Symbol : Set) : Set where _|_ : Seq Symbol → Body Symbol → Body Symbol _; : Seq Symbol → Body Symbol record CFGGrammer (Symbol : Set) : Set where field cfg : Symbol → Body Symbol top : Symbol eq? : Symbol → Symbol → Bool typeof : Symbol → Node Symbol infixr 80 _|_ infixr 90 _; infixr 100 _,_ infixr 110 _. open CFGGrammer ----------------- -- -- CGF language -- ----------------- split : {Σ : Set} → (List Σ → Bool) → ( List Σ → Bool) → List Σ → Bool split x y [] = x [] /\ y [] split x y (h ∷ t) = (x [] /\ y (h ∷ t)) \/ split (λ t1 → x ( h ∷ t1 )) (λ t2 → y t2 ) t cfg-language0 : {Symbol : Set} → CFGGrammer Symbol → Body Symbol → List Symbol → Bool {-# TERMINATING #-} cfg-language1 : {Symbol : Set} → CFGGrammer Symbol → Seq Symbol → List Symbol → Bool cfg-language1 cg Error x = false cfg-language1 cg (S , seq) x with typeof cg S cfg-language1 cg (_ , seq) (x' ∷ t) | T x = eq? cg x x' /\ cfg-language1 cg seq t cfg-language1 cg (_ , seq) [] | T x = false cfg-language1 cg (_ , seq) x | N nonTerminal = split (cfg-language0 cg (cfg cg nonTerminal) )(cfg-language1 cg seq ) x cfg-language1 cg (S .) x with typeof cg S cfg-language1 cg (_ .) (x' ∷ []) | T x = eq? cg x x' cfg-language1 cg (_ .) _ | T x = false cfg-language1 cg (_ .) x | N nonTerminal = cfg-language0 cg (cfg cg nonTerminal) x cfg-language0 cg _ [] = false cfg-language0 cg (rule | b) x = cfg-language1 cg rule x \/ cfg-language0 cg b x cfg-language0 cg (rule ;) x = cfg-language1 cg rule x cfg-language : {Symbol : Set} → CFGGrammer Symbol → List Symbol → Bool cfg-language cg = cfg-language0 cg (cfg cg (top cg )) data IFToken : Set where EA : IFToken EB : IFToken EC : IFToken IF : IFToken THEN : IFToken ELSE : IFToken SA : IFToken SB : IFToken SC : IFToken expr : IFToken statement : IFToken token-eq? : IFToken → IFToken → Bool token-eq? EA EA = true token-eq? EB EB = true token-eq? EC EC = true token-eq? IF IF = true token-eq? THEN THEN = true token-eq? ELSE ELSE = true token-eq? SA SA = true token-eq? SB SB = true token-eq? SC SC = true token-eq? expr expr = true token-eq? statement statement = true token-eq? _ _ = false typeof-IFG : IFToken → Node IFToken typeof-IFG expr = N expr typeof-IFG statement = N statement typeof-IFG x = T x IFGrammer : CFGGrammer IFToken IFGrammer = record { cfg = cfg' ; top = statement ; eq? = token-eq? ; typeof = typeof-IFG } where cfg' : IFToken → Body IFToken cfg' expr = EA . | EB . | EC . ; cfg' statement = SA . | SB . | SC . | IF , expr , THEN , statement . | IF , expr , THEN , statement , ELSE , statement . ; cfg' x = Error ; cfgtest1 = cfg-language IFGrammer ( SA ∷ [] ) cfgtest2 = cfg-language1 IFGrammer ( SA .) ( SA ∷ [] ) cfgtest3 = cfg-language1 IFGrammer ( SA . ) ( SA ∷ [] ) cfgtest4 = cfg-language IFGrammer (IF ∷ EA ∷ THEN ∷ SA ∷ [] ) cfgtest5 = cfg-language1 IFGrammer ( IF , expr , THEN , statement . ) (IF ∷ EA ∷ THEN ∷ SA ∷ [] ) cfgtest6 = cfg-language1 IFGrammer ( statement .)(IF ∷ EA ∷ SA ∷ [] ) cfgtest7 = cfg-language1 IFGrammer ( IF , expr , THEN , statement , ELSE , statement . ) (IF ∷ EA ∷ THEN ∷ SA ∷ ELSE ∷ SB ∷ [] ) cfgtest8 = cfg-language IFGrammer (IF ∷ EA ∷ THEN ∷ IF ∷ EB ∷ THEN ∷ SA ∷ ELSE ∷ SB ∷ [] ) cfgtest9 = cfg-language IFGrammer (IF ∷ EB ∷ THEN ∷ SA ∷ ELSE ∷ SB ∷ [] ) data E1Token : Set where e1 : E1Token e[ : E1Token e] : E1Token expr : E1Token term : E1Token E1-token-eq? : E1Token → E1Token → Bool E1-token-eq? e1 e1 = true E1-token-eq? e[ e] = true E1-token-eq? e] e] = true E1-token-eq? expr expr = true E1-token-eq? term term = true E1-token-eq? _ _ = false typeof-E1 : E1Token → Node E1Token typeof-E1 expr = N expr typeof-E1 term = N term typeof-E1 x = T x E1Grammer : CFGGrammer E1Token E1Grammer = record { cfg = cfgE ; top = expr ; eq? = E1-token-eq? ; typeof = typeof-E1 } where cfgE : E1Token → Body E1Token cfgE expr = term . ; cfgE term = e1 . | e[ , expr , e] . ; cfgE x = Error ; ecfgtest1 = cfg-language E1Grammer ( e1 ∷ [] ) ecfgtest2 = cfg-language E1Grammer ( e[ ∷ e1 ∷ e] ∷ [] ) ecfgtest3 = cfg-language E1Grammer ( e[ ∷ e[ ∷ e1 ∷ e] ∷ e] ∷ [] ) ecfgtest4 = cfg-language E1Grammer ( e[ ∷ e1 ∷ [] ) open import Function left : {t : Set } → List E1Token → ( fail next : List E1Token → t ) → t left ( e[ ∷ t ) fail next = next t left t fail next = fail t right : {t : Set } → List E1Token → ( fail next : List E1Token → t ) → t right ( e] ∷ t ) fail next = next t right t fail next = fail t {-# TERMINATING #-} expr1 : {t : Set } → List E1Token → ( fail next : List E1Token → t ) → t expr1 ( e1 ∷ t ) fail next = next t expr1 ( expr ∷ t ) fail next = next t expr1 ( term ∷ t ) fail next = next t expr1 x fail next = left x fail $ λ x → expr1 x fail $ λ x → right x fail $ next -- expr1 x fail next = left x fail ( λ x → expr1 x fail ( λ x → right x fail ( next ))) cfgtest01 = expr1 ( e[ ∷ e[ ∷ e1 ∷ e] ∷ e] ∷ [] ) (λ x → ⟪ false , x ⟫ ) (λ x → ⟪ true , x ⟫ ) cfgtest02 = expr1 ( e[ ∷ e[ ∷ e1 ∷ e] ∷ [] ) (λ x → ⟪ false , x ⟫ ) (λ x → ⟪ true , x ⟫ ) cfgtest03 = expr1 ( e[ ∷ e[ ∷ e1 ∷ e] ∷ e] ∷ e] ∷ [] ) (λ x → ⟪ false , x ⟫ ) (λ x → ⟪ true , x ⟫ ) open import pushdown data CG1 : Set where ce : CG1 c1 : CG1 pd : CG1 → E1Token → CG1 → CG1 ∧ PushDown CG1 pd c1 e[ s = ⟪ c1 , push c1 ⟫ pd c1 e] c1 = ⟪ c1 , pop ⟫ pd c1 e1 c1 = ⟪ c1 , none ⟫ pd s expr s1 = ⟪ c1 , none ⟫ pd s term s1 = ⟪ c1 , none ⟫ pd s _ s1 = ⟪ ce , none ⟫ pok : CG1 → Bool pok c1 = true pok s = false pnc : PushDownAutomaton CG1 E1Token CG1 pnc = record { pδ = pd ; pempty = ce ; pok = pok } pda-ce-test1 = PushDownAutomaton.paccept pnc c1 ( e[ ∷ e[ ∷ e1 ∷ e] ∷ e] ∷ [] ) [] pda-ce-test2 = PushDownAutomaton.paccept pnc c1 ( e[ ∷ e[ ∷ e1 ∷ e] ∷ [] ) [] pda-ce-test3 = PushDownAutomaton.paccept pnc c1 ( e[ ∷ e1 ∷ e] ∷ e1 ∷ [] ) [] record PNC (accept : Bool ) : Set where field orig-x : List E1Token pnc-q : CG1 pnc-st : List CG1 pnc-p : CG1 → List CG1 → Bool success : accept ≡ true → pnc-p pnc-q pnc-st ≡ true → PushDownAutomaton.paccept pnc c1 orig-x [] ≡ true failure : accept ≡ false → pnc-p pnc-q pnc-st ≡ false → PushDownAutomaton.paccept pnc c1 orig-x [] ≡ false open import Data.Unit {-# TERMINATING #-} expr1P : {n : Level } {t : Set n } → (x : List E1Token ) → PNC true → ( fail : List E1Token → PNC false → t ) → ( next : List E1Token → PNC true → t ) → t expr1P x _ _ _ = {!!} expr1P-test : (x : List E1Token ) → ⊤ expr1P-test x = expr1P x record { orig-x = x ; pnc-q = c1 ; pnc-st = [] ; pnc-p = λ q st → PushDownAutomaton.paccept pnc q x st ; success = λ _ p → p ; failure = λ _ p → p } (λ x p → {!!} ) (λ x p → {!!} )