Mercurial > hg > Members > kono > Proof > automaton
view automaton-in-agda/src/non-regular.agda @ 294:248711134141
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 29 Dec 2021 19:08:28 +0900 |
parents | c7fbb0b61a8b |
children | 99c2cbe6a862 |
line wrap: on
line source
module non-regular where open import Data.Nat open import Data.Empty open import Data.List open import Data.Maybe hiding ( map ) open import Relation.Binary.PropositionalEquality hiding ( [_] ) open import logic open import automaton open import automaton-ex open import finiteSetUtil open import finiteSet open import Relation.Nullary open import regular-language open FiniteSet inputnn : List In2 → Maybe (List In2) inputnn [] = just [] inputnn (i1 ∷ t) = just (i1 ∷ t) inputnn (i0 ∷ t) with inputnn t ... | nothing = nothing ... | just [] = nothing ... | just (i0 ∷ t1) = nothing -- can't happen ... | just (i1 ∷ t1) = just t1 -- remove i1 from later part inputnn1 : List In2 → Bool inputnn1 s with inputnn s ... | nothing = false ... | just [] = true ... | just _ = false t1 = inputnn1 ( i0 ∷ i1 ∷ [] ) t2 = inputnn1 ( i0 ∷ i0 ∷ i1 ∷ i1 ∷ [] ) t3 = inputnn1 ( i0 ∷ i0 ∷ i0 ∷ i1 ∷ i1 ∷ [] ) inputnn0 : ( n : ℕ ) → { Σ : Set } → ( x y : Σ ) → List Σ → List Σ inputnn0 zero {_} _ _ s = s inputnn0 (suc n) x y s = x ∷ ( inputnn0 n x y ( y ∷ s ) ) t4 : inputnn1 ( inputnn0 5 i0 i1 [] ) ≡ true t4 = refl t5 : ( n : ℕ ) → Set t5 n = inputnn1 ( inputnn0 n i0 i1 [] ) ≡ true -- -- if there is an automaton with n states , which accespt inputnn1, it has a trasition function. -- The function is determinted by inputs, -- open RegularLanguage open Automaton open _∧_ data Trace { Q : Set } { Σ : Set } (fa : Automaton Q Σ ) : (is : List Σ) → ( List Q) → Set where tend : {q : Q} → aend fa q ≡ true → Trace fa [] (q ∷ []) tnext : {q : Q} → {i : Σ} { is : List Σ} {qs : List Q} → Trace fa is (δ fa q i ∷ qs) → Trace fa (i ∷ is) ( q ∷ δ fa q i ∷ qs ) tr-len : { Q : Set } { Σ : Set } → (fa : Automaton Q Σ ) → (is : List Σ) → (q : Q) → (qs : List Q) → Trace fa is (q ∷ qs) → ( length is ≡ length qs ) ∧ (suc (length is) ≡ length (trace fa q is ) ) tr-len {Q} {Σ} fa .[] q .[] (tend x) = ⟪ refl , refl ⟫ tr-len {Q} {Σ} fa (i ∷ is) q (q0 ∷ qs) (tnext t) = ⟪ cong suc (proj1 (tr-len {Q} {Σ} fa is q0 qs t)) , cong suc (proj2 (tr-len {Q} {Σ} fa is q0 qs t)) ⟫ tr-accept→ : { Q : Set } { Σ : Set } → (fa : Automaton Q Σ ) → (is : List Σ) → (q : Q) → (qs : List Q) → Trace fa is (q ∷ qs) → accept fa q is ≡ true tr-accept→ {Q} {Σ} fa [] q [] (tend x) = x tr-accept→ {Q} {Σ} fa (i ∷ is) q (x ∷ qs) (tnext tr) = tr-accept→ {Q} {Σ} fa is (δ fa q i) qs tr tr-accept← : { Q : Set } { Σ : Set } → (fa : Automaton Q Σ ) → (is : List Σ) → (q : Q) → accept fa q is ≡ true → Trace fa is (trace fa q is) tr-accept← {Q} {Σ} fa [] q ac = tend ac tr-accept← {Q} {Σ} fa (x ∷ []) q ac = tnext (tend ac ) tr-accept← {Q} {Σ} fa (x ∷ x1 ∷ is) q ac = tnext (tr-accept← fa (x1 ∷ is) (δ fa q x) ac) open Data.Maybe -- head : {a : Set} → List a → Maybe a -- head [] = nothing -- head (h ∷ _ ) = just h tr-append1 : { Q : Set } { Σ : Set } → (fa : Automaton Q Σ ) → (i : Σ) → ( q : Q) → (q0 : Q) → (is : List Σ) → head (trace fa q is) ≡ just ( δ fa q0 i ) → (tr : Trace fa is (trace fa q is) ) → Trace fa (i ∷ is) (q0 ∷ (trace fa q is)) tr-append1 fa i q q0 is hd tr with trace fa q is tr-append1 fa i q q0 is () tr | [] ... | q₁ ∷ qs = tr01 hd where tr01 : just q₁ ≡ just (δ fa q0 i) → Trace fa (i ∷ is) (q0 ∷ q₁ ∷ qs) tr01 refl = tnext tr open import Relation.Binary.HeterogeneousEquality as HE using (_≅_ ) record TA { Q : Set } { Σ : Set } (fa : Automaton Q Σ ) {is : List Σ} { qs : List Q } (tr : Trace fa is qs) : Set where field x y z : List Σ qx qy qz : List Q non-nil-y : ¬ y ≡ [] trace0 : Trace fa (x ++ y ++ z) (qx ++ qy ++ qz) trace1 : Trace fa (x ++ y ++ y ++ z) (qx ++ qy ++ qy ++ qz) trace-eq : trace0 ≅ tr tr-append : { Q : Set } { Σ : Set } (fa : Automaton Q Σ ) (finq : FiniteSet Q) (q : Q) (is : List Σ) ( qs : List Q ) → dup-in-list finq q qs ≡ true → (tr : Trace fa is qs ) → TA fa tr tr-append {Q} {Σ} fa finq q is qs dup tr = tra-phase1 qs is tr dup where open TA tra-phase3 : (qs : List Q) → (is : List Σ) → (tr : Trace fa is qs ) → {!!} → (qy : List Q) → (iy : List Σ) → (ty : Trace fa iy qy ) → phase2 finq q qy ≡ true → {!!} → Trace fa (iy ++ is) (qy ++ qs) tra-phase3 = {!!} tra-phase2 : (qs : List Q) → (is : List Σ) → (tr : Trace fa is qs ) → phase2 finq q qs ≡ true → (qy : List Q) → (iy : List Σ) → (ty : Trace fa iy qy ) → phase2 finq q qy ≡ true → TA fa tr tra-phase2 (q0 ∷ []) is (tend x₁) p qy iy ty py = {!!} tra-phase2 (q0 ∷ (q₁ ∷ qs)) (x ∷ is) (tnext tr) p qy iy ty py with equal? finq q q0 ... | true = {!!} ... | false = {!!} where tr1 : TA fa tr tr1 = tra-phase2 (q₁ ∷ qs) is tr p qy iy ty py tra-phase1 : (qs : List Q) → (is : List Σ) → (tr : Trace fa is qs ) → phase1 finq q qs ≡ true → TA fa tr tra-phase1 (q0 ∷ []) is (tend x₁) p = {!!} tra-phase1 (q0 ∷ (q₁ ∷ qs)) (i ∷ is) (tnext tr) p with equal? finq q q0 ... | true = record { x = i ∷ x tr2 ; y = y tr2 ; z = z tr2 ; qx = q0 ∷ qx tr2 ; qy = qy tr2 ;qz = qz tr2 ; trace0 = {!!} ; trace1 = {!!} ; non-nil-y = non-nil-y tr2 ; trace-eq = {!!} } where tr2 : TA fa tr tr2 = tra-phase2 (q₁ ∷ qs) is tr p (q₁ ∷ qs) is tr p -- tr3 : Trace fa (x tr2 ++ y tr2 ++ z tr2) (qx tr2 ++ qy tr2 ++ qz tr2) → Trace fa ((i ∷ x tr2) ++ y tr2 ++ z tr2) (q0 ∷ qx tr2 ++ qy tr2 ++ qz tr2) -- tr3 tr = tnext {!!} ... | false = {!!} where tr1 : TA fa tr tr1 = tra-phase1 (q₁ ∷ qs) is tr p open RegularLanguage open import Data.Nat.Properties open import nat lemmaNN : (r : RegularLanguage In2 ) → ¬ ( (s : List In2) → isRegular inputnn1 s r ) lemmaNN r Rg = {!!} where n : ℕ n = suc (finite (afin r)) nn = inputnn0 n i0 i1 [] nn01 : (i : ℕ) → inputnn1 ( inputnn0 i i0 i1 [] ) ≡ true nn01 zero = refl nn01 (suc i) with nn01 i ... | t = {!!} nn03 : accept (automaton r) (astart r) nn ≡ true nn03 = subst (λ k → k ≡ true ) (Rg nn ) (nn01 n) count : In2 → List In2 → ℕ count _ [] = 0 count i0 (i0 ∷ s) = suc (count i0 s) count i1 (i1 ∷ s) = suc (count i1 s) count x (_ ∷ s) = count x s nn10 : (s : List In2) → accept (automaton r) (astart r) s ≡ true → count i0 s ≡ count i1 s nn10 = {!!} nn11 : {x : In2} → (s t : List In2) → count x (s ++ t) ≡ count x s + count x t nn11 = {!!} nntrace = trace (automaton r) (astart r) nn nn04 : Trace (automaton r) nn nntrace nn04 = tr-accept← (automaton r) nn (astart r) nn03 nn07 : (n : ℕ) → length (inputnn0 n i0 i1 []) ≡ n + n nn07 n = subst (λ k → length (inputnn0 n i0 i1 []) ≡ k) (+-comm (n + n) _ ) (nn08 n [] )where nn08 : (n : ℕ) → (s : List In2) → length (inputnn0 n i0 i1 s) ≡ n + n + length s nn08 zero s = refl nn08 (suc n) s = begin length (inputnn0 (suc n) i0 i1 s) ≡⟨ refl ⟩ suc (length (inputnn0 n i0 i1 (i1 ∷ s))) ≡⟨ cong suc (nn08 n (i1 ∷ s)) ⟩ suc (n + n + suc (length s)) ≡⟨ +-assoc (suc n) n _ ⟩ suc n + (n + suc (length s)) ≡⟨ cong (λ k → suc n + k) (sym (+-assoc n _ _)) ⟩ suc n + ((n + 1) + length s) ≡⟨ cong (λ k → suc n + (k + length s)) (+-comm n _) ⟩ suc n + (suc n + length s) ≡⟨ sym (+-assoc (suc n) _ _) ⟩ suc n + suc n + length s ∎ where open ≡-Reasoning nn09 : (n m : ℕ) → n ≤ n + m nn09 zero m = z≤n nn09 (suc n) m = s≤s (nn09 n m) nn05 : length nntrace > finite (afin r) nn05 = begin suc (finite (afin r)) ≤⟨ nn09 _ _ ⟩ n + n ≡⟨ sym (nn07 n) ⟩ length (inputnn0 n i0 i1 []) ≤⟨ refl-≤s ⟩ suc (length (inputnn0 (suc (finite (afin r))) i0 i1 [])) ≡⟨ proj2 (tr-len (automaton r) (inputnn0 n i0 i1 []) (astart r) (trace (automaton r) (δ (automaton r) (astart r) i0) (inputnn0 (finite (afin r)) i0 i1 (i1 ∷ []))) (tr-accept← (automaton r) _ _ nn03 )) ⟩ length nntrace ∎ where open ≤-Reasoning nn02 : TA (automaton r) nn04 nn02 = tr-append (automaton r) (afin r) (Dup-in-list.dup nn06) _ _ (Dup-in-list.is-dup nn06) nn04 where nn06 : Dup-in-list ( afin r) nntrace nn06 = dup-in-list>n (afin r) nntrace nn05 nn12 : (x y z : List In2) → ¬ y ≡ [] → accept (automaton r) (astart r) (x ++ y ++ z) ≡ true → ¬ (accept (automaton r) (astart r) (x ++ y ++ y ++ z) ≡ true) nn12 x y z p q = {!!} where mono-color : List In2 → Bool mono-color [] = true mono-color (i0 ∷ s) = mono-color0 s where mono-color0 : List In2 → Bool mono-color0 [] = true mono-color0 (i1 ∷ s) = false mono-color0 (i0 ∷ s) = mono-color0 s mono-color (i1 ∷ s) = mono-color1 s where mono-color1 : List In2 → Bool mono-color1 [] = true mono-color1 (i0 ∷ s) = false mono-color1 (i1 ∷ s) = mono-color1 s mono-color (i1 ∷ s) = {!!} i1-i0? : List In2 → Bool i1-i0? [] = false i1-i0? (i1 ∷ []) = false i1-i0? (i0 ∷ []) = false i1-i0? (i1 ∷ i0 ∷ s) = true i1-i0? (_ ∷ s0 ∷ s1) = i1-i0? (s0 ∷ s1) nn13 : mono-color y ≡ true → count i0 (x ++ y ++ z) ≡ count i1 (x ++ y ++ z) → ¬ ( count i0 (x ++ y ++ y ++ z) ≡ count i1 (x ++ y ++ y ++ z) ) nn13 = {!!} nn16 : (s : List In2 ) → accept (automaton r) (astart r) s ≡ true → count i0 s ≡ count i1 s nn16 = {!!} nn15 : (s : List In2 ) → i1-i0? s ≡ true → accept (automaton r) (astart r) s ≡ false nn15 = {!!} nn14 : mono-color y ≡ false → i1-i0? (x ++ y ++ y ++ z) ≡ true nn14 = {!!} nn17 : accept (automaton r) (astart r) (x ++ y ++ z) ≡ true → ¬ (accept (automaton r) (astart r) (x ++ y ++ y ++ z) ≡ true) nn17 p q with mono-color y | inspect mono-color y ... | true | record { eq = eq } = {!!} ... | false | record { eq = eq } = {!!} -- q ( nn15 (x ++ y ++ z) (nn14 eq))