Mercurial > hg > Members > kono > Proof > automaton
view automaton-in-agda/src/regular-star.agda @ 294:248711134141
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 29 Dec 2021 19:08:28 +0900 |
parents | 1c8ed1220489 |
children | 708570e55a91 |
line wrap: on
line source
module regular-star where open import Level renaming ( suc to Suc ; zero to Zero ) open import Data.List open import Data.Nat hiding ( _≟_ ) open import Data.Fin hiding ( _+_ ) open import Data.Empty open import Data.Unit open import Data.Product -- open import Data.Maybe open import Relation.Nullary open import Relation.Binary.PropositionalEquality hiding ( [_] ) open import logic open import nat open import automaton open import regular-language open import nfa open import sbconst2 open import finiteSet open import finiteSetUtil open import Relation.Binary.PropositionalEquality hiding ( [_] ) open import regular-concat open Automaton open FiniteSet open RegularLanguage Star-NFA : {Σ : Set} → (A : RegularLanguage Σ ) → NAutomaton (states A ) Σ Star-NFA {Σ} A = record { Nδ = δnfa ; Nend = nend } module Star-NFA where δnfa : states A → Σ → states A → Bool δnfa q i q₁ with aend (automaton A) q ... | true = equal? (afin A) ( astart A) q₁ ... | false = equal? (afin A) (δ (automaton A) q i) q₁ nend : states A → Bool nend q = aend (automaton A) q Star-NFA-start : {Σ : Set} → (A : RegularLanguage Σ ) → states A → Bool Star-NFA-start A q = equal? (afin A) (astart A) q \/ aend (automaton A) q SNFA-exist : {Σ : Set} → (A : RegularLanguage Σ ) → (states A → Bool) → Bool SNFA-exist A qs = exists (afin A) qs M-Star : {Σ : Set} → (A : RegularLanguage Σ ) → RegularLanguage Σ M-Star {Σ} A = record { states = states A → Bool ; astart = Star-NFA-start A ; afin = fin→ (afin A) ; automaton = subset-construction (SNFA-exist A ) (Star-NFA A ) } open Split open _∧_ open NAutomaton open import Data.List.Properties closed-in-star : {Σ : Set} → (A B : RegularLanguage Σ ) → ( x : List Σ ) → isRegular (Star (contain A) ) x ( M-Star A ) closed-in-star {Σ} A B x = ≡-Bool-func closed-in-star→ closed-in-star← where NFA = (Star-NFA A ) closed-in-star→ : Star (contain A) x ≡ true → contain (M-Star A ) x ≡ true closed-in-star→ star = {!!} open Found closed-in-star← : contain (M-Star A ) x ≡ true → Star (contain A) x ≡ true closed-in-star← C with subset-construction-lemma← (SNFA-exist A ) NFA {!!} x C ... | CC = {!!}