Mercurial > hg > Members > kono > Proof > automaton
view automaton-in-agda/src/regex1.agda @ 330:407684f806e4
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 16 Nov 2022 17:43:10 +0900 |
parents | 1c8ed1220489 |
children | 9324852d3a17 |
line wrap: on
line source
{-# OPTIONS --allow-unsolved-metas #-} module regex1 where open import Level renaming ( suc to succ ; zero to Zero ) open import Data.Fin hiding ( pred ) open import Data.Nat hiding ( _≟_ ) open import Data.List hiding ( any ; [_] ) -- import Data.Bool using ( Bool ; true ; false ; _∧_ ) -- open import Data.Bool using ( Bool ; true ; false ; _∧_ ; _∨_ ) open import Relation.Binary.PropositionalEquality as RBF hiding ( [_] ) open import Relation.Nullary using (¬_; Dec; yes; no) open import regex open import logic -- postulate a b c d : Set data In : Set where a : In b : In c : In d : In -- infixr 40 _&_ _||_ r1' = (< a > & < b >) & < c > --- abc r1 = < a > & < b > & < c > --- abc r0 : ¬ (r1' ≡ r1) r0 () any = < a > || < b > || < c > || < d > --- a|b|c|d r2 = ( any * ) & ( < a > & < b > & < c > ) -- .*abc r3 = ( any * ) & ( < a > & < b > & < c > & < a > & < b > & < c > ) r4 = ( < a > & < b > & < c > ) || ( < b > & < c > & < d > ) r5 = ( any * ) & ( < a > & < b > & < c > || < b > & < c > & < d > ) open import nfa -- former ++ later ≡ x split : {Σ : Set} → (x : List Σ → Bool) → (y : List Σ → Bool) → (z : List Σ ) → Bool split x y [] = x [] /\ y [] split x y (h ∷ t) = (x [] /\ y (h ∷ t)) \/ split (λ t1 → x ( h ∷ t1 )) (λ t2 → y t2 ) t --- ( a ∷ b ∷ c ∷ [] ) -- --- former ( a ∷ b ∷ c ∷ [] ) ∧ later [] --- ∨ ( former ( a ∷ b ∷ [] ) ∧ later (c ∷ [] ) ) --- ∨ ( former ( a ∷ [] ) ∧ later (b ∷ c ∷ [] ) ) --- ∨ ( former ( [] ) ∧ later (a ∷ b ∷ c ∷ [] ) ) tt1 : {Σ : Set} → ( P Q : List In → Bool ) → split P Q ( a ∷ b ∷ c ∷ [] ) ≡ ? tt1 P Q = ? -- {-# TERMINATING #-} -- repeat : {Σ : Set} → (List Σ → Bool) → List Σ → Bool -- repeat x [] = true -- repeat {Σ} x ( h ∷ t ) = split x (repeat {Σ} x) ( h ∷ t ) repeat : {Σ : Set} → (x : List Σ → Bool) → (y : List Σ ) → Bool repeat {Σ} x [] = true repeat {Σ} x (h ∷ y) = repeat2 [] (h ∷ y) where repeat2 : (pre y : List Σ ) → Bool repeat2 pre [] = false repeat2 pre (h ∷ y) = (x (pre ++ (h ∷ [])) /\ repeat x y ) \/ repeat2 (pre ++ (h ∷ [])) y test-AB→repeat1 : {Σ : Set} → {A : List In → Bool} → repeat A ( a ∷ b ∷ c ∷ [] ) ≡ A (a ∷ []) /\ ( (A (b ∷ []) /\ (A (c ∷ []) /\ true \/ false) ) \/ (A (b ∷ c ∷ []) /\ true \/ false)) \/ A (a ∷ b ∷ []) /\ (A (c ∷ []) /\ true \/ false) \/ A (a ∷ b ∷ c ∷ []) /\ true \/ false test-AB→repeat1 {_} {A} = refl -- Meaning of regular expression regular-language : {Σ : Set} → Regex Σ → ((x y : Σ ) → Dec (x ≡ y)) → List Σ → Bool regular-language φ cmp _ = false regular-language ε cmp [] = true regular-language ε cmp (_ ∷ _) = false regular-language (x *) cmp = repeat ( regular-language x cmp ) regular-language (x & y) cmp = split ( λ z → regular-language x cmp z ) (λ z → regular-language y cmp z ) regular-language (x || y) cmp = λ s → ( regular-language x cmp s ) \/ ( regular-language y cmp s) regular-language < h > cmp [] = false regular-language < h > cmp (h1 ∷ [] ) with cmp h h1 ... | yes _ = true ... | no _ = false regular-language < h > _ (_ ∷ _ ∷ _) = false cmpi : (x y : In ) → Dec (x ≡ y) cmpi a a = yes refl cmpi b b = yes refl cmpi c c = yes refl cmpi d d = yes refl cmpi a b = no (λ ()) cmpi a c = no (λ ()) cmpi a d = no (λ ()) cmpi b a = no (λ ()) cmpi b c = no (λ ()) cmpi b d = no (λ ()) cmpi c a = no (λ ()) cmpi c b = no (λ ()) cmpi c d = no (λ ()) cmpi d a = no (λ ()) cmpi d b = no (λ ()) cmpi d c = no (λ ()) test-regex : regular-language r1' cmpi ( a ∷ [] ) ≡ false test-regex = refl -- test-regex2 : regular-language r2 cmpi ( b ∷ c ∷ a ∷ b ∷ [] ) ≡ false -- test-regex2 = refl test-regex1 : regular-language r2 cmpi ( a ∷ a ∷ b ∷ c ∷ [] ) ≡ true test-regex1 = refl test-AB→split : {Σ : Set} → {A B : List In → Bool} → split A B ( a ∷ b ∷ a ∷ [] ) ≡ ( ( A [] /\ B ( a ∷ b ∷ a ∷ [] ) ) \/ ( A ( a ∷ [] ) /\ B ( b ∷ a ∷ [] ) ) \/ ( A ( a ∷ b ∷ [] ) /\ B ( a ∷ [] ) ) \/ ( A ( a ∷ b ∷ a ∷ [] ) /\ B [] ) ) test-AB→split {_} {A} {B} = refl list-eq : {Σ : Set} → (cmpi : (s t : Σ) → Dec (s ≡ t )) → (s t : List Σ ) → Bool list-eq cmpi [] [] = true list-eq cmpi [] (x ∷ t) = false list-eq cmpi (x ∷ s) [] = false list-eq cmpi (x ∷ s) (y ∷ t) with cmpi x y ... | yes _ = list-eq cmpi s t ... | no _ = false -- split-spec-01 : {s t u : List In } → s ++ t ≡ u → split (list-eq cmpi s) (list-eq cmpi t) u ≡ true -- split-spec-01 = {!!} -- from example 1.53 1 ex53-1 : Set ex53-1 = (s : List In ) → regular-language ( (< a > *) & < b > & (< a > *) ) cmpi s ≡ true → {!!} -- contains exact one b ex53-2 : Set ex53-2 = (s : List In ) → regular-language ( (any * ) & < b > & (any *) ) cmpi s ≡ true → {!!} -- contains at lease one b evenp : {Σ : Set} → List Σ → Bool oddp : {Σ : Set} → List Σ → Bool oddp [] = false oddp (_ ∷ t) = evenp t evenp [] = true evenp (_ ∷ t) = oddp t -- from example 1.53 5 egex-even : Set egex-even = (s : List In ) → regular-language ( ( any & any ) * ) cmpi s ≡ true → evenp s ≡ true test11 = regular-language ( ( any & any ) * ) cmpi (a ∷ []) test12 = regular-language ( ( any & any ) * ) cmpi (a ∷ b ∷ []) -- proof-egex-even : egex-even -- proof-egex-even [] _ = refl -- proof-egex-even (a ∷ []) () -- proof-egex-even (b ∷ []) () -- proof-egex-even (c ∷ []) () -- proof-egex-even (x ∷ x₁ ∷ s) y = proof-egex-even s {!!} open import finiteSet iFin : FiniteSet In iFin = record { finite = finite0 ; Q←F = Q←F0 ; F←Q = F←Q0 ; finiso→ = finiso→0 ; finiso← = finiso←0 } where finite0 : ℕ finite0 = 4 Q←F0 : Fin finite0 → In Q←F0 zero = a Q←F0 (suc zero) = b Q←F0 (suc (suc zero)) = c Q←F0 (suc (suc (suc zero))) = d F←Q0 : In → Fin finite0 F←Q0 a = # 0 F←Q0 b = # 1 F←Q0 c = # 2 F←Q0 d = # 3 finiso→0 : (q : In) → Q←F0 ( F←Q0 q ) ≡ q finiso→0 a = refl finiso→0 b = refl finiso→0 c = refl finiso→0 d = refl finiso←0 : (f : Fin finite0 ) → F←Q0 ( Q←F0 f ) ≡ f finiso←0 zero = refl finiso←0 (suc zero) = refl finiso←0 (suc (suc zero)) = refl finiso←0 (suc (suc (suc zero))) = refl open import derive In iFin open import automaton ra-ex = trace (regex→automaton cmpi r2) (record { state = r2 ; is-derived = unit }) ( a ∷ b ∷ c ∷ [])