Mercurial > hg > Members > kono > Proof > automaton
view automaton-in-agda/src/extended-automaton.agda @ 346:4456eebbd1bc
copying countable bijection may not easy
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 17 Jul 2023 11:00:19 +0900 |
parents | 6f3636fbc481 |
children | af8f630b7e60 |
line wrap: on
line source
{-# OPTIONS --allow-unsolved-metas #-} module extended-automaton where open import Level renaming ( suc to succ ; zero to Zero ) open import Data.Nat -- hiding ( erase ) open import Data.List open import Data.Maybe hiding ( map ) -- open import Data.Bool using ( Bool ; true ; false ) renaming ( not to negate ) open import Relation.Binary.PropositionalEquality hiding ( [_] ) open import Relation.Nullary using (¬_; Dec; yes; no) open import Level renaming ( suc to succ ; zero to Zero ) open import Data.Product hiding ( map ) open import logic record Automaton ( Q : Set ) ( Σ : Set ) : Set where field δ : Q → Σ → Q aend : Q → Bool open Automaton accept : { Q : Set } { Σ : Set } → Automaton Q Σ → Q → List Σ → Bool accept M q [] = aend M q accept M q ( H ∷ T ) = accept M ( δ M q H ) T NAutomaton : ( Q : Set ) ( Σ : Set ) → Set NAutomaton Q Σ = Automaton ( Q → Bool ) Σ Naccept : { Q : Set } { Σ : Set } → Automaton (Q → Bool) Σ → (exists : ( Q → Bool ) → Bool) → (Nstart : Q → Bool) → List Σ → Bool Naccept M exists sb [] = exists ( λ q → sb q /\ aend M sb ) Naccept M exists sb (i ∷ t ) = Naccept M exists (λ q → exists ( λ qn → (sb qn /\ ( δ M sb i q ) ))) t PDA : ( Q : Set ) ( Σ : Set ) → Set PDA Q Σ = Automaton ( List Q ) Σ data Write ( Σ : Set ) : Set where write : Σ → Write Σ wnone : Write Σ -- erase write tnone data Move : Set where left : Move right : Move mnone : Move record OTuring ( Q : Set ) ( Σ : Set ) : Set where field tδ : Q → Σ → Q × ( Write Σ ) × Move tstart : Q tend : Q → Bool tnone : Σ taccept : List Σ → ( Q × List Σ × List Σ ) taccept L = ? open import bijection b0 : ( Q : Set ) ( Σ : Set ) → Bijection (List Q) (( Q × ( Write Σ ) × Move ) ∧ ( Q × List Σ × List Σ )) b0 = ? Turing : ( Q : Set ) ( Σ : Set ) → Set Turing Q Σ = Automaton ( List Q ) Σ NDTM : ( Q : Set ) ( Σ : Set ) → Set NDTM Q Σ = Automaton ( List Q → Bool ) Σ UTM : ( Q : Set ) ( Σ : Set ) → Set UTM Q Σ = Automaton ( List Q ) Σ SuperTM : ( Q : Set ) ( Σ : Set ) → Set SuperTM Q Σ = Automaton ( List Q ) Σ