view automaton-in-agda/src/temporal-logic.agda @ 327:4aa0ebd75673

...
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Fri, 21 Jan 2022 12:31:34 +0900 (2022-01-21)
parents automaton-in-agda/src/omega-automaton.agda@a3fb231feeb9
children cd73fe566291
line wrap: on
line source
module temporal-logic  where

open import Level renaming ( suc to succ ; zero to Zero )
open import Data.Nat
open import Data.List
open import Data.Maybe
-- open import Data.Bool using ( Bool ; true ; false ; _∧_ ) renaming ( not to negate )
open import  Relation.Binary.PropositionalEquality hiding ( [_] )
open import Relation.Nullary -- using (not_; Dec; yes; no)
open import Data.Empty

open import logic
open import automaton

open Automaton 


open import nat
open import Data.Nat.Properties

data LTTL ( V : Set )  : Set where
    s :  V → LTTL V
    ○ :  LTTL V → LTTL V
    □ :  LTTL V → LTTL V
    ⋄ :  LTTL V → LTTL V
    _U_  :  LTTL V → LTTL  V → LTTL  V
    t-not :  LTTL V → LTTL  V
    _t\/_ :  LTTL V → LTTL  V → LTTL  V
    _t/\_ :  LTTL V → LTTL  V → LTTL  V

{-# TERMINATING #-}
M1 : { V : Set } → (ℕ → V → Bool) → ℕ →  LTTL V  → Set
M1 σ i (s x) = σ i x ≡ true
M1 σ i (○ x) = M1 σ (suc i) x  
M1 σ i (□ p) = (j : ℕ) → i ≤ j → M1  σ j p
M1 σ i (⋄ p) = ¬ ( M1 σ i (t-not p) )
M1 σ i (p U q) = ¬ ( ( j : ℕ) → i ≤ j → ¬ (M1 σ j q ∧ (( k : ℕ) → i ≤ k → k < j → M1 σ j p )) )
M1 σ i (t-not p) = ¬ ( M1 σ i p )
M1 σ i (p t\/ p₁) = M1 σ i p ∧ M1 σ i p₁ 
M1 σ i (p t/\ p₁) = M1 σ i p ∨ M1 σ i p₁ 

data LITL ( V : Set )  : Set where
    iv :  V → LITL V
    i○ :  LITL V → LITL V
    _&_  :  LITL V → LITL  V → LITL  V
    i-not :  LITL V → LITL  V
    _i\/_ :  LITL V → LITL  V → LITL  V
    _i/\_ :  LITL V → LITL  V → LITL  V

open import Relation.Binary.Definitions
open import Data.Unit using ( tt ; ⊤ )

{-# TERMINATING #-}
MI : { V : Set } → (ℕ → V → Bool) → (i j : ℕ) → i ≤ j  →  LITL V  → Set
MI σ i j lt (iv x) = σ i x ≡ true
MI σ i j lt (i○ x) with <-cmp i j
... | tri< a ¬b ¬c = MI σ (suc i) j {!!} x
... | tri≈ ¬a b ¬c = ⊤
... | tri> ¬a ¬b c = ⊥-elim ( nat-≤> lt c)
MI σ i j lt (p & q) = ¬ ( ( k : ℕ) → (i<k : i ≤ k) → (k<j : k ≤ j) → ¬ ( MI σ i k i<k p ∧ MI σ k j k<j p))
MI σ i j lt (i-not p) = ¬ ( MI σ i j lt p )
MI σ i j lt (p i\/ p₁) = MI σ i j lt p ∧ MI σ i j lt p₁ 
MI σ i j lt (p i/\ p₁) = MI σ i j lt p ∨ MI σ i j lt p₁ 

data QBool ( V : Set )  : Set where
    qb :  Bool → QBool V
    qv :  V → QBool V
    exists :  V → QBool V → QBool V
    b-not :  QBool V → QBool  V
    _b\/_ :  QBool V → QBool  V → QBool  V
    _b/\_ :  QBool V → QBool  V → QBool  V

{-# TERMINATING #-}
SQ1 : { V : Set } → ((x y : V) → Dec ( x ≡ y))   → QBool V → V  → Bool → QBool V
SQ1 {V} dec (qb x) v t = qb x
SQ1 {V} dec (qv x) v t with dec x v
... | yes _ = qb t
... | no _ = qv x
SQ1 {V} dec (exists x p) v t = SQ1 dec (SQ1 dec p x true) v t b\/  SQ1 dec (SQ1 dec p x false) v t
SQ1 {V} dec (b-not p) v t = b-not (SQ1 dec p v t )
SQ1 {V} dec (p b\/ p₁) v t =  SQ1 dec p v t b\/  SQ1 dec p₁ v t
SQ1 {V} dec (p b/\ p₁) v t = SQ1 dec p v t b/\  SQ1 dec p₁ v t

{-# TERMINATING #-}
MQ : { V : Set } → (V → Bool) → ((x y : V) → Dec ( x ≡ y))   → QBool V → Bool
MQ {V} val dec (qb x) = x
MQ {V} val dec (qv x) = val x
MQ {V} val dec (exists x p) =  MQ val dec ( SQ1 dec p x true b\/ SQ1 dec p x false )
MQ {V} val dec (b-not p) = not ( MQ val dec p )
MQ {V} val dec (p b\/ p₁) = MQ val dec p \/ MQ val dec p₁ 
MQ {V} val dec (p b/\ p₁) = MQ val dec p /\ MQ val dec p₁ 

data QPTL ( V : Set )  : Set where
    qs :  V → QPTL V
    q○ :  QPTL V → QPTL V
    q□ :  QPTL V → QPTL V
    q⋄ :  QPTL V → QPTL V
    q-exists :  V → QPTL V → QPTL V
    q-not :  QPTL V → QPTL  V
    _q\/_ :  QPTL V → QPTL  V → QPTL  V
    _q/\_ :  QPTL V → QPTL  V → QPTL  V