view automaton-in-agda/src/bijection.agda @ 256:5aff0067b194

...
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Mon, 05 Jul 2021 11:10:15 +0900
parents 3fa72793620b
children 246da8456ad1
line wrap: on
line source

module bijection where

open import Level renaming ( zero to Zero ; suc to Suc )
open import Data.Nat
open import Data.Maybe
open import Data.List hiding ([_] ; sum )
open import Data.Nat.Properties
open import Relation.Nullary
open import Data.Empty
open import Data.Unit hiding ( _≤_ )
open import  Relation.Binary.Core hiding (_⇔_)
open import  Relation.Binary.Definitions
open import Relation.Binary.PropositionalEquality

open import logic
open import nat

record Bijection {n m : Level} (R : Set n) (S : Set m) : Set (n Level.⊔ m)  where
   field
       fun←  :  S → R
       fun→  :  R → S
       fiso← : (x : R)  → fun← ( fun→ x )  ≡ x 
       fiso→ : (x : S ) → fun→ ( fun← x )  ≡ x 

injection :  {n m : Level} (R : Set n) (S : Set m) (f : R → S ) → Set (n Level.⊔ m)
injection R S f = (x y : R) → f x ≡ f y → x ≡ y

open Bijection 

b→injection0 : {n m : Level} (R : Set n) (S : Set m)  → (b : Bijection R S) → injection R S (fun→ b)
b→injection0 R S b x y eq = begin
          x
        ≡⟨ sym ( fiso← b x ) ⟩
          fun← b ( fun→ b x )
        ≡⟨ cong (λ k → fun← b k ) eq ⟩
          fun← b ( fun→ b y )
        ≡⟨  fiso← b y  ⟩
          y  
        ∎  where open ≡-Reasoning

b→injection1 : {n m : Level} (R : Set n) (S : Set m)  → (b : Bijection R S) → injection S R (fun← b)
b→injection1 R S b x y eq = trans (  sym ( fiso→ b x ) ) (trans (  cong (λ k → fun→ b k ) eq ) ( fiso→ b y  ))

--  ¬ A = A → ⊥ 

diag : {S : Set }  (b : Bijection  ( S → Bool ) S) → S → Bool
diag b n = not (fun← b n n)

diagonal : { S : Set } → ¬ Bijection  ( S → Bool ) S
diagonal {S} b = diagn1 (fun→ b (diag b) ) refl where
    diagn1 : (n : S ) → ¬ (fun→ b (diag b) ≡ n ) 
    diagn1 n dn = ¬t=f (diag b n ) ( begin
           not (diag b n)
        ≡⟨⟩
           not (not fun← b n n)
        ≡⟨ cong (λ k → not (k  n) ) (sym (fiso← b _)) ⟩
           not (fun← b (fun→ b (diag b))  n)
        ≡⟨ cong (λ k → not (fun← b k n) ) dn ⟩
           not (fun← b n n)
        ≡⟨⟩
           diag b n 
        ∎ ) where open ≡-Reasoning


open _∧_

record NN ( i  : ℕ) (nxn→n :  ℕ →  ℕ → ℕ) (n→nxn : ℕ → ℕ ∧ ℕ) : Set where
  field
     j k sum stage : ℕ
     nn : j + k ≡ sum
     ni : i ≡ j + stage 
     k1 : nxn→n j k ≡ i
     k0 : n→nxn i ≡ ⟪ j , k ⟫ 
     nn-unique : {j0 k0 : ℕ } →  nxn→n j0 k0 ≡ i  → ⟪ j , k ⟫ ≡ ⟪ j0 , k0 ⟫ 

i≤0→i≡0 : {i : ℕ } → i ≤ 0 → i ≡ 0
i≤0→i≡0 {0} z≤n = refl


nxn : Bijection ℕ (ℕ ∧ ℕ)
nxn = record {
     fun← = λ p → nxn→n (proj1 p) (proj2 p)
   ; fun→ =  n→nxn 
   ; fiso← = n-id
   ; fiso→ = λ x → nn-id (proj1 x) (proj2 x)
  } where
     nxn→n :  ℕ →  ℕ → ℕ
     nxn→n zero zero = zero
     nxn→n zero (suc j) = j + suc (nxn→n zero j)
     nxn→n (suc i) zero = suc i + suc (nxn→n i zero)
     nxn→n (suc i) (suc j) = suc i + suc j + suc (nxn→n i (suc j))
     n→nxn : ℕ → ℕ ∧ ℕ
     n→nxn zero = ⟪ 0 , 0 ⟫
     n→nxn (suc i) with n→nxn i
     ... | ⟪ x , zero ⟫ = ⟪ zero  , suc x ⟫
     ... | ⟪ x , suc y ⟫ = ⟪ suc x , y ⟫

     nxn→n0 : { j k : ℕ } →  nxn→n j k ≡ 0 → ( j ≡ 0 ) ∧ ( k ≡ 0 )
     nxn→n0 {zero} {zero} eq = ⟪ refl , refl ⟫
     nxn→n0 {zero} {(suc k)} eq = ⊥-elim ( nat-≡< (sym eq) (subst (λ k → 0 < k) (+-comm _ k) (s≤s z≤n)))
     nxn→n0 {(suc j)} {zero} eq = ⊥-elim ( nat-≡< (sym eq) (s≤s z≤n) )
     nxn→n0 {(suc j)} {(suc k)} eq = ⊥-elim ( nat-≡< (sym eq) (s≤s z≤n) )

     nid20 : (i : ℕ) →  i +  (nxn→n 0 i) ≡ nxn→n i 0
     nid20 zero = refl -- suc (i + (i + suc (nxn→n 0 i))) ≡ suc (i + suc (nxn→n i 0))
     nid20 (suc i) = begin
         suc (i + (i + suc (nxn→n 0 i)))  ≡⟨ cong (λ k → suc (i + k)) (sym (+-assoc i 1 (nxn→n 0 i))) ⟩
         suc (i + ((i + 1) + nxn→n 0 i))  ≡⟨ cong (λ k →  suc (i + (k + nxn→n 0 i))) (+-comm i 1)  ⟩
         suc (i + suc (i + nxn→n 0 i)) ≡⟨ cong ( λ k → suc (i + suc k)) (nid20 i)  ⟩
         suc (i + suc (nxn→n i 0)) ∎  where open ≡-Reasoning

     nid4 : {i j : ℕ} →  i + 1 + j ≡ i + suc j
     nid4 {zero} {j} = refl
     nid4 {suc i} {j} = cong suc (nid4 {i} {j} )
     nid5 : {i j k : ℕ} →  i + suc (suc j) + suc k ≡ i + suc j + suc (suc k )
     nid5 {zero} {j} {k} = begin
          suc (suc j) + suc k ≡⟨ +-assoc 1 (suc j) _ ⟩
          1 + (suc j + suc k) ≡⟨ +-comm 1 _ ⟩
          (suc j + suc k) + 1 ≡⟨ +-assoc (suc j) (suc k) _ ⟩
          suc j + (suc k + 1) ≡⟨ cong (λ k → suc j + k ) (+-comm (suc k) 1) ⟩
          suc j + suc (suc k) ∎ where open ≡-Reasoning
     nid5 {suc i} {j} {k} = cong suc (nid5 {i} {j} {k} )

     nid2 : (i j : ℕ) → suc (nxn→n i (suc j)) ≡ nxn→n (suc i) j 
     nid2 zero zero = refl
     nid2 zero (suc j) = refl
     nid2 (suc i) zero = begin
          suc (nxn→n (suc i) 1)  ≡⟨ refl ⟩
          suc (suc (i + 1 + suc (nxn→n i 1)))  ≡⟨ cong (λ k → suc (suc k)) nid4  ⟩
          suc (suc (i + suc (suc (nxn→n i 1))))  ≡⟨ cong (λ k →  suc (suc (i + suc (suc k)))) (nid3 i) ⟩
          suc (suc (i + suc (suc (i + suc (nxn→n i 0)))))  ≡⟨ refl ⟩
          nxn→n (suc (suc i)) zero ∎ where
             open ≡-Reasoning
             nid3 : (i : ℕ) → nxn→n i 1 ≡ i + suc (nxn→n i 0)
             nid3 zero = refl
             nid3 (suc i) = begin
                 suc (i + 1 + suc (nxn→n i 1)) ≡⟨ cong suc nid4 ⟩
                 suc (i + suc (suc (nxn→n i 1))) ≡⟨ cong (λ k →  suc (i + suc (suc k))) (nid3 i) ⟩
                 suc (i + suc (suc (i + suc (nxn→n i 0))))

     nid2 (suc i) (suc j) = begin
          suc (nxn→n (suc i) (suc (suc j)))  ≡⟨ refl ⟩
          suc (suc (i + suc (suc j) + suc (nxn→n i (suc (suc j)))))  ≡⟨ cong (λ k → suc (suc (i + suc (suc j) + k))) (nid2 i (suc j)) ⟩
          suc (suc (i + suc (suc j) + suc      (i + suc j + suc (nxn→n i (suc j)))))  ≡⟨ cong ( λ k → suc (suc k)) nid5 ⟩
          suc (suc (i + suc j       + suc (suc (i + suc j + suc (nxn→n i (suc j)))))) ≡⟨ refl ⟩
          nxn→n (suc (suc i)) (suc j) ∎ where
             open ≡-Reasoning

     nid00 : (i : ℕ) → suc (nxn→n i 0) ≡ nxn→n 0 (suc i) 
     nid00 zero = refl
     nid00 (suc i) = begin
        suc (suc (i + suc (nxn→n i 0))) ≡⟨ cong (λ k → suc (suc (i + k ))) (nid00 i) ⟩
        suc (suc (i + (nxn→n 0 (suc i)))) ≡⟨ refl ⟩
        suc (suc (i + (i + suc (nxn→n 0 i))))  ≡⟨ cong suc (sym ( +-assoc 1 i (i + suc (nxn→n 0 i)))) ⟩
        suc ((1 + i) + (i + suc (nxn→n 0 i))) ≡⟨ cong (λ k → suc (k + (i + suc (nxn→n 0 i)))) (+-comm 1 i) ⟩
        suc ((i + 1) + (i + suc (nxn→n 0 i))) ≡⟨ cong suc (+-assoc i 1 (i + suc (nxn→n 0 i))) ⟩
        suc (i + suc (i + suc (nxn→n 0 i))) ∎ where open ≡-Reasoning

     nn : ( i  : ℕ) → NN i nxn→n n→nxn
     nn zero = record { j = 0 ; k = 0 ; sum = 0 ; stage = 0 ; nn = refl ; ni = refl ; k1 = refl ; k0 = refl
        ;  nn-unique = λ {j0} {k0} eq → cong₂ (λ x y → ⟪ x , y ⟫) (sym (proj1 (nxn→n0 eq))) (sym (proj2 (nxn→n0 {j0} {k0} eq))) }
     nn (suc i) with NN.k (nn i)  | inspect  NN.k (nn i) 
     ... | zero | record { eq = eq } = record { k = suc (NN.sum (nn i)) ; j = 0 ; sum = suc  (NN.sum (nn i)) ; stage = suc  (NN.sum (nn i)) + (NN.stage (nn i))
         ; nn = refl
         ; ni = nn01 ; k1 = nn02 ; k0 = nn03 ;  nn-unique = nn04 } where
            sum = NN.sum (nn i)
            stage = NN.stage (nn i)
            j = NN.j (nn i)
            nn01 : suc i ≡ 0 + (suc sum + stage )
            nn01 = begin
               suc i ≡⟨ cong suc (NN.ni (nn i)) ⟩
               suc ((NN.j  (nn i) ) + stage )  ≡⟨ cong (λ k → suc (k + stage )) (+-comm 0 _ ) ⟩
               suc ((NN.j  (nn i) + 0 ) + stage )  ≡⟨ cong (λ k → suc ((NN.j  (nn i) + k) + stage )) (sym eq) ⟩
               suc ((NN.j (nn i) + NN.k  (nn i)) + stage )  ≡⟨ cong (λ k → suc ( k + stage )) (NN.nn (nn i)) ⟩
               0 +   (suc sum + stage ) ∎  where open ≡-Reasoning
            nn02 :  nxn→n 0 (suc sum)  ≡ suc i
            nn02 = begin
               sum + suc (nxn→n 0 sum) ≡⟨ sym (+-assoc sum 1 (nxn→n 0 sum)) ⟩
               (sum + 1) + nxn→n 0 sum  ≡⟨ cong (λ k → k + nxn→n 0 sum )  (+-comm sum 1 )⟩
               suc (sum + nxn→n 0 sum) ≡⟨ cong suc (nid20 sum ) ⟩
               suc (nxn→n sum 0) ≡⟨ cong (λ k → suc (nxn→n k 0 )) (sym (NN.nn (nn i))) ⟩
               suc (nxn→n (NN.j (nn i) + (NN.k (nn i))  ) 0) ≡⟨ cong₂ (λ j k → suc (nxn→n (NN.j (nn i) + j) k )) eq (sym eq)  ⟩
               suc (nxn→n (NN.j (nn i) + 0 ) (NN.k (nn i))) ≡⟨ cong (λ k → suc ( nxn→n k (NN.k (nn i)))) (+-comm (NN.j (nn i)) 0) ⟩
               suc (nxn→n (NN.j (nn i)) (NN.k (nn i))) ≡⟨ cong suc (NN.k1 (nn i) ) ⟩
               suc i ∎  where open ≡-Reasoning
            nn03 :  n→nxn (suc i) ≡ ⟪ 0 , suc (NN.sum (nn i)) ⟫   -- k0 : n→nxn i ≡ ⟪ NN.j (nn i) = sum , NN.k (nn i) = 0 ⟫
            nn03 with n→nxn i | inspect  n→nxn i
            ... | ⟪ x , zero  ⟫ | record { eq = eq1 } = begin
                ⟪ zero , suc x ⟫ ≡⟨ cong (λ k →  ⟪ zero , suc k ⟫) (sym (cong proj1 eq1)) ⟩
                ⟪ zero , suc (proj1 (n→nxn i)) ⟫ ≡⟨ cong (λ k →  ⟪ zero , suc k ⟫) (cong proj1 (NN.k0 (nn i)))  ⟩
                ⟪ zero , suc (NN.j (nn i)) ⟫ ≡⟨  cong (λ k →  ⟪ zero , suc k ⟫) (+-comm 0 _ ) ⟩
                ⟪ zero , suc (NN.j (nn i) + 0) ⟫ ≡⟨  cong (λ k →  ⟪ zero , suc (NN.j (nn i) + k)  ⟫ ) (sym eq)  ⟩
                ⟪ zero , suc (NN.j (nn i) + NN.k (nn i)) ⟫ ≡⟨ cong (λ k →  ⟪ zero , suc k ⟫ ) (NN.nn (nn i))  ⟩
                ⟪ 0 , suc sum  ⟫  ∎  where open ≡-Reasoning
            ... | ⟪ x , suc y ⟫ | record { eq = eq1 } = ⊥-elim ( nat-≡< (sym (cong proj2 (NN.k0 (nn i)))) (begin
               suc (NN.k (nn i)) ≡⟨ cong suc eq ⟩
               suc 0 ≤⟨ s≤s z≤n  ⟩
               suc y ≡⟨ sym (cong proj2 eq1) ⟩
               proj2 (n→nxn i)  ∎ ))  where open ≤-Reasoning
            --  nid2  : (i j : ℕ) → suc (nxn→n i (suc j)) ≡ nxn→n (suc i) j 
            nn04 : {j0 k0 : ℕ} → nxn→n j0 k0 ≡ suc i → ⟪ 0 , suc (NN.sum (nn i)) ⟫ ≡ ⟪ j0 , k0 ⟫
            nn04 {zero} {suc k0} eq1 = cong (λ k → ⟪ 0 , k ⟫ ) (cong suc (sym nn08)) where -- eq : nxn→n zero (suc k0) ≡ suc i -- 
               nn07 : nxn→n k0 0 ≡ i
               nn07 = cong pred ( begin
                  suc ( nxn→n k0 0 ) ≡⟨ nid00 k0 ⟩
                  nxn→n 0 (suc k0 )  ≡⟨ eq1 ⟩
                  suc i  ∎ )  where open ≡-Reasoning 
               nn08 : k0 ≡ sum 
               nn08 = begin
                  k0  ≡⟨ cong proj1 (sym (NN.nn-unique (nn i) nn07)) ⟩
                  NN.j (nn i)  ≡⟨ +-comm 0 _ ⟩
                  NN.j (nn i) + 0  ≡⟨ cong (λ k →  NN.j (nn i) + k) (sym eq) ⟩
                  NN.j (nn i) + NN.k (nn i)  ≡⟨ NN.nn (nn i) ⟩
                  sum   ∎   where open ≡-Reasoning 
            nn04 {suc j0} {k0} eq1 = ⊥-elim ( nat-≡< (cong proj2 (nn06 nn05)) (subst (λ k → k < suc k0) (sym eq) (s≤s z≤n))) where
               nn05 : nxn→n j0 (suc k0) ≡ i
               nn05 = begin
                  nxn→n j0 (suc k0)  ≡⟨ cong pred ( begin 
                    suc (nxn→n j0 (suc k0))  ≡⟨ nid2 j0 k0 ⟩
                    nxn→n (suc j0) k0  ≡⟨ eq1 ⟩
                    suc i ∎ ) ⟩
                  i ∎   where open ≡-Reasoning 
               nn06 : nxn→n j0 (suc k0) ≡ i → ⟪ NN.j (nn i) , NN.k (nn i) ⟫ ≡ ⟪ j0 , suc k0 ⟫ 
               nn06 = NN.nn-unique (nn i)
     ... | suc k  | record {eq = eq} = record { k = k ; j = suc (NN.j (nn i)) ; sum = NN.sum (nn i) ; stage = NN.stage (nn i) ; nn = nn10
         ; ni = cong suc (NN.ni (nn i)) ; k1 = nn11 ; k0 = nn12 ;  nn-unique = nn13 } where
            nn10 : suc (NN.j (nn i)) + k ≡ NN.sum (nn i)
            nn10 = begin
                suc (NN.j (nn i)) + k ≡⟨ cong (λ x → x + k) (+-comm 1 _)  ⟩
                (NN.j (nn i) + 1) + k ≡⟨  +-assoc (NN.j (nn i)) 1 k ⟩
                NN.j (nn i) + suc k  ≡⟨ cong (λ k → NN.j (nn i) + k) (sym eq) ⟩
                NN.j (nn i) + NN.k (nn i) ≡⟨ NN.nn (nn i) ⟩
                NN.sum (nn i)  ∎   where open ≡-Reasoning 
            nn11 :  nxn→n (suc (NN.j (nn i))) k ≡ suc i --  nxn→n ( NN.j (nn i)) (NN.k (nn i) ≡ i
            nn11 = begin
                nxn→n (suc (NN.j (nn i))) k   ≡⟨ sym (nid2 (NN.j (nn i)) k) ⟩
                suc (nxn→n (NN.j (nn i)) (suc k)) ≡⟨ cong (λ k →   suc (nxn→n (NN.j (nn i)) k)) (sym eq) ⟩
                suc (nxn→n ( NN.j (nn i)) (NN.k (nn i)))  ≡⟨ cong suc (NN.k1 (nn i)) ⟩
                suc i  ∎   where open ≡-Reasoning 
            nn18 :  zero < NN.k (nn i)
            nn18 = subst (λ k → 0 < k ) ( begin
                    suc k ≡⟨ sym eq ⟩
                    NN.k (nn i)  ∎  ) (s≤s z≤n )  where open ≡-Reasoning  
            nn12 :   n→nxn (suc i) ≡ ⟪ suc (NN.j (nn i)) , k ⟫  --  n→nxn i ≡ ⟪ NN.j (nn i) ,  NN.k (nn i)  ⟫
            nn12 with  n→nxn i | inspect  n→nxn i
            ... | ⟪ x , zero ⟫ | record { eq = eq1 } = ⊥-elim ( nat-≡< (sym (cong proj2 eq1))
                (subst (λ k → 0 < k ) ( begin
                    suc k ≡⟨ sym eq ⟩
                    NN.k (nn i) ≡⟨ cong proj2 (sym (NN.k0 (nn i)) ) ⟩
                    proj2 (n→nxn i) ∎  ) (s≤s z≤n )) ) where open ≡-Reasoning  --  eq1 n→nxn i ≡ ⟪ x , zero ⟫
            ... | ⟪ x , suc y ⟫ | record { eq = eq1 } = begin -- n→nxn i ≡ ⟪ x , suc y ⟫
                ⟪ suc x , y ⟫ ≡⟨ refl ⟩
                ⟪ suc x , pred (suc y) ⟫ ≡⟨ cong (λ k → ⟪ suc (proj1 k) , pred (proj2 k) ⟫) ( begin
                   ⟪ x , suc y ⟫  ≡⟨ sym eq1 ⟩
                   n→nxn i ≡⟨ NN.k0 (nn i) ⟩
                   ⟪ NN.j (nn i) , NN.k (nn i) ⟫ ∎ )  ⟩
                ⟪ suc (NN.j (nn i)) , pred (NN.k (nn i)) ⟫ ≡⟨ cong (λ k →  ⟪ suc (NN.j (nn i)) , pred k ⟫) eq ⟩
                ⟪ suc (NN.j (nn i)) , k ⟫ ∎   where open ≡-Reasoning 
            nn13 :  {j0 k0 : ℕ} → nxn→n j0 k0 ≡ suc i → ⟪ suc (NN.j (nn i)) , k ⟫ ≡ ⟪ j0 , k0 ⟫
            nn13 {zero} {suc k0} eq1 = ⊥-elim ( nat-≡< (sym (cong proj2 nn17)) nn18 ) where  -- (nxn→n zero (suc k0)) ≡ suc i
                nn16 : nxn→n k0 zero ≡ i
                nn16 =  cong pred ( subst (λ k → k ≡ suc i) (sym ( nid00 k0 )) eq1 )
                nn17 : ⟪ NN.j (nn i) , NN.k (nn i) ⟫ ≡ ⟪ k0 , zero ⟫
                nn17 = NN.nn-unique (nn i) nn16
            nn13 {suc j0} {k0} eq1 = begin
               ⟪ suc (NN.j (nn i)) , pred (suc k) ⟫ ≡⟨ cong (λ k →  ⟪ suc (NN.j (nn i)) , pred k ⟫ ) (sym eq) ⟩
               ⟪ suc (NN.j (nn i)) , pred (NN.k (nn i)) ⟫ ≡⟨ cong (λ k → ⟪ suc (proj1 k) , pred (proj2 k) ⟫) ( begin 
                 ⟪ NN.j (nn i) , NN.k (nn i) ⟫  ≡⟨ nn15 ⟩
                 ⟪ j0 , suc k0 ⟫ ∎ ) ⟩
               ⟪ suc j0 , k0 ⟫ ∎  where -- nxn→n (suc j0) k0 ≡ suc i
                open ≡-Reasoning
                nn14 : nxn→n j0 (suc k0) ≡ i
                nn14 = cong pred ( subst (λ k → k ≡ suc i) (sym ( nid2 j0 k0 )) eq1 )
                nn15 : ⟪ NN.j (nn i) , NN.k (nn i) ⟫ ≡ ⟪ j0 , suc k0 ⟫
                nn15 = NN.nn-unique (nn i) nn14

     n-id :  (i : ℕ) → nxn→n (proj1 (n→nxn i)) (proj2 (n→nxn i)) ≡ i
     n-id i = subst (λ k →  nxn→n (proj1 k) (proj2 k)  ≡ i ) (sym (NN.k0 (nn i))) (NN.k1 (nn i))

     nn-id : (j k : ℕ) → n→nxn (nxn→n j k) ≡ ⟪ j , k ⟫
     nn-id j k = begin
          n→nxn (nxn→n j k)  ≡⟨ NN.k0 (nn (nxn→n j k))   ⟩
          ⟪ NN.j (nn (nxn→n j k)) , NN.k (nn (nxn→n j k)) ⟫ ≡⟨ NN.nn-unique (nn (nxn→n j k)) refl ⟩
          ⟪ j , k ⟫ ∎  where open ≡-Reasoning


b1 : (b : Bijection  ( ℕ → Bool ) ℕ) → ℕ 
b1 b = fun→ b (diag b)

b-iso : (b : Bijection  ( ℕ → Bool ) ℕ) → fun← b (b1 b) ≡ (diag b)
b-iso b = fiso← b _

to1 : {n : Level} {R : Set n} → Bijection ℕ R → Bijection ℕ (⊤ ∨ R )
to1 {n} {R} b = record {
       fun←  = to11
     ; fun→  = to12
     ; fiso← = to13
     ; fiso→ = to14
   } where
       to11 : ⊤ ∨ R → ℕ
       to11 (case1 tt) = 0
       to11 (case2 x) = suc ( fun← b x )
       to12 : ℕ → ⊤ ∨ R
       to12 zero = case1 tt
       to12 (suc n) = case2 ( fun→ b n)
       to13 : (x : ℕ) → to11 (to12 x) ≡ x
       to13 zero = refl
       to13 (suc x) = cong suc (fiso← b x)
       to14 : (x : ⊤ ∨ R) → to12 (to11 x) ≡ x
       to14 (case1 x) = refl
       to14 (case2 x) = cong case2 (fiso→ b x)

open _∧_

open import nat

open ≡-Reasoning

--   []     0
--   0    → 1
--   1    → 2
--   01   → 3
--   11   → 4
--   ...
--
{-# TERMINATING #-}
LBℕ : Bijection ℕ ( List Bool ) 
LBℕ = record {
       fun←  = λ x → lton x 
     ; fun→  = λ n → ntol n 
     ; fiso← = lbiso0 
     ; fiso→ = lbisor
   } where
     lton1 : List Bool → ℕ
     lton1 [] = 0
     lton1 (true ∷ t) = suc (lton1 t + lton1 t)
     lton1 (false ∷ t) = lton1 t + lton1 t
     lton : List Bool → ℕ
     lton [] = 0
     lton x  = suc (lton1 x)
     ntol1 : ℕ → List Bool 
     ntol1 0 = []
     ntol1 (suc x) with div2 (suc x)
     ... | ⟪ x1 , true  ⟫ = true  ∷ ntol1 x1 -- non terminating
     ... | ⟪ x1 , false ⟫ = false ∷ ntol1 x1
     ntol : ℕ → List Bool 
     ntol 0 = []
     ntol 1 = false ∷ []
     ntol (suc n) = ntol1 n
     xx :   (x : ℕ ) → List Bool ∧ ℕ
     xx x = ⟪ (ntol x) , lton ((ntol x))  ⟫
     add11 : (x1 : ℕ ) → suc x1 + suc x1 ≡ suc (suc  (x1 + x1))
     add11 zero = refl
     add11 (suc x) = cong (λ k → suc (suc k)) (trans (+-comm x _) (cong suc (+-comm _ x)))
     add12 : (x1 x : ℕ ) → suc x1 + x ≡ x1 + suc x
     add12 zero x = refl
     add12 (suc x1) x = cong suc (add12 x1 x)
     ---- div2-eq : (x : ℕ ) → div2-rev ( div2 x ) ≡ x
     div20 : (x x1 : ℕ ) → div2 (suc x) ≡ ⟪ x1 , false ⟫ → x1 + x1 ≡ suc x
     div20 x x1 eq = begin
         x1 + x1 ≡⟨ cong (λ k → div2-rev k ) (sym eq) ⟩
         div2-rev (div2 (suc x)) ≡⟨ div2-eq _ ⟩
         suc x ∎ 
     div21 : (x x1 : ℕ ) → div2 (suc x) ≡ ⟪ x1 , true ⟫  → suc  (x1 + x1) ≡ suc x
     div21 x x1 eq = begin
         suc  (x1 + x1) ≡⟨ cong (λ k → div2-rev k ) (sym eq) ⟩
         div2-rev (div2 (suc x)) ≡⟨ div2-eq _ ⟩
         suc x ∎ 
     lbiso1 :  (x : ℕ) → suc (lton1 (ntol1 x)) ≡ suc x
     lbiso1 zero = refl
     lbiso1 (suc x) with div2 (suc x) | inspect div2 (suc x)
     ... | ⟪ x1 , true ⟫ | record { eq = eq1 } = begin
         suc (suc (lton1 (ntol1 x1) + lton1 (ntol1 x1))) ≡⟨ sym (add11 _) ⟩
         suc (lton1 (ntol1 x1)) + suc (lton1 (ntol1 x1)) ≡⟨ cong ( λ k → k + k ) (lbiso1 x1) ⟩
         suc x1 + suc x1 ≡⟨ add11 x1 ⟩
         suc (suc  (x1 + x1)) ≡⟨ cong suc (div21 x x1 eq1) ⟩
         suc (suc x) ∎ 
     ... | ⟪ x1 , false ⟫ | record { eq = eq1 } = begin
         suc (lton1 (ntol1 x1) + lton1 (ntol1 x1)) ≡⟨ cong ( λ k → k + lton1 (ntol1 x1) ) (lbiso1 x1) ⟩
         suc x1 + lton1 (ntol1 x1) ≡⟨ add12 _ _ ⟩
         x1 + suc (lton1 (ntol1 x1)) ≡⟨ cong ( λ k → x1 + k )  (lbiso1 x1) ⟩
         x1 + suc x1 ≡⟨ +-comm x1 _ ⟩
         suc (x1 + x1) ≡⟨ cong suc (div20 x x1 eq1) ⟩
         suc (suc x) ∎ 
     lbiso0 :  (x : ℕ) → lton (ntol x)  ≡ x
     lbiso0 zero = refl
     lbiso0 (suc zero) = refl
     lbiso0 (suc (suc x)) = subst (λ k → k ≡ suc (suc x)) (hh x) ( lbiso1 (suc x)) where
        hh : (x : ℕ ) → suc (lton1 (ntol1 (suc x))) ≡ lton (ntol (suc (suc x)))
        hh x with div2 (suc x)
        ... | ⟪ _ , true ⟫ = refl
        ... | ⟪ _ , false ⟫ = refl
     lbisor0 :  (x : List Bool) → ntol1 (lton1 (true ∷ x))  ≡ true ∷ x
     lbisor0 = {!!}
     lbisor1 :  (x : List Bool) → ntol1 (lton1 (false ∷ x))  ≡ false ∷ x
     lbisor1 = {!!}
     lbisor :  (x : List Bool) → ntol (lton x)  ≡ x
     lbisor [] = refl
     lbisor (false ∷ []) = refl
     lbisor (true ∷ []) = refl
     lbisor (false ∷ t) = trans {!!} ( lbisor1 t ) 
     lbisor (true ∷  t) = trans {!!} ( lbisor0 t )