Mercurial > hg > Members > kono > Proof > automaton
view automaton-in-agda/src/derive.agda @ 256:5aff0067b194
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 05 Jul 2021 11:10:15 +0900 |
parents | 3fa72793620b |
children | dd98e7e5d4a5 |
line wrap: on
line source
{-# OPTIONS --allow-unsolved-metas #-} open import Relation.Binary.PropositionalEquality hiding ( [_] ) open import Relation.Nullary using (¬_; Dec; yes; no) open import Data.List hiding ( [_] ) module derive ( Σ : Set) ( eq? : (x y : Σ) → Dec (x ≡ y)) where -- open import nfa open import Data.Nat -- open import Data.Nat hiding ( _<_ ; _>_ ) -- open import Data.Fin hiding ( _<_ ) open import finiteSet open import FSetUtil open import automaton open import logic open import regex empty? : Regex Σ → Bool empty? ε = true empty? φ = false empty? (x *) = true empty? (x & y) = empty? x /\ empty? y empty? (x || y) = empty? x \/ empty? y empty? < x > = false derivative0 : Regex Σ → Σ → Regex Σ derivative0 ε s = φ derivative0 φ s = φ derivative0 (x *) s = derivative0 x s & (x *) derivative0 (x & y) s with empty? x ... | true = (derivative0 x s & y) || derivative0 y s ... | false = derivative0 x s & y derivative0 (x || y) s = derivative0 x s || derivative0 y s derivative0 < x > s with eq? x s ... | yes _ = ε ... | no _ = φ derivative : Regex Σ → Σ → Regex Σ derivative ε s = φ derivative φ s = φ derivative (x *) s with derivative x s ... | ε = x * ... | φ = φ ... | t = t & (x *) derivative (x & y) s with empty? x ... | true with derivative x s | derivative y s ... | ε | φ = φ ... | ε | t = y || t ... | φ | t = t ... | x1 | φ = x1 & y ... | x1 | y1 = (x1 & y) || y1 derivative (x & y) s | false with derivative x s ... | ε = y ... | φ = φ ... | t = t & y derivative (x || y) s with derivative x s | derivative y s ... | φ | y1 = y1 ... | x1 | φ = x1 ... | x1 | y1 = x1 || y1 derivative < x > s with eq? x s ... | yes _ = ε ... | no _ = φ data regex-states (x : Regex Σ ) : Regex Σ → Set where unit : regex-states x x derive : { y : Regex Σ } → regex-states x y → (s : Σ) → regex-states x ( derivative y s ) record Derivative (x : Regex Σ ) : Set where field state : Regex Σ is-derived : regex-states x state open Derivative open import Data.Fin -- derivative generates (x & y) || ... form. y and x part is a substerm of original regex -- since subterm is finite, only finite number of state is negerated, if we normalize ||-list. data subterm (r : Regex Σ) : Regex Σ → Set where sε : subterm r ε sφ : subterm r φ orig : subterm r r x& : {x y : Regex Σ } → subterm r (x & y) → subterm r x &y : {x y : Regex Σ } → subterm r (x & y) → subterm r y x| : {x y : Regex Σ } → subterm r (x || y) → subterm r x |y : {x y : Regex Σ } → subterm r (x || y) → subterm r y s* : {x : Regex Σ } → subterm r (x *) → subterm r x s<_> : (s : Σ) → subterm r < s > → subterm r < s > record Subterm (r : Regex Σ) : Set where field subt : Regex Σ is-subt : subterm r subt finsub : (r : Regex Σ ) → FiniteSet (Subterm r) finsub ε = {!!} finsub φ = {!!} finsub (r *) = {!!} finsub (r & r₁) = {!!} finsub (r || r₁) = {!!} finsub < x > = {!!} finsubList : (r : Regex Σ ) → FiniteSet (Subterm r ∧ Subterm r → Bool ) finsubList r = fin→ ( fin-∧ (finsub r) (finsub r) ) -- derivative is subset of Subterm r → Subterm r → Bool der2ssb : {r : Regex Σ } → Derivative r → Subterm r ∧ Subterm r → Bool der2ssb = {!!} -- we cannot say this, because Derivative is redundant -- der2inject : {r : Regex Σ } → (x y : Derivative r ) → ( ( s t : Subterm r ∧ Subterm r ) → der2ssb x s ≡ der2ssb y t ) → x ≡ y -- this does not work, becuase it depends on input sequences -- finite-derivative : (r : Regex Σ) → FiniteSet Σ → FiniteSet (Derivative r) -- in case of automaton, number of derivative is limited by iteration of input length, so it is finite. regex→automaton : (r : Regex Σ) → Automaton (Derivative r) Σ regex→automaton r = record { δ = λ d s → record { state = derivative (state d) s ; is-derived = derive-step d s} ; aend = λ d → empty? (state d) } where derive-step : (d0 : Derivative r) → (s : Σ) → regex-states r (derivative (state d0) s) derive-step d0 s = derive (is-derived d0) s