Mercurial > hg > Members > kono > Proof > automaton
view a02/agda/lambda.agda @ 138:7a0634a7c25a
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 18 Dec 2019 17:34:15 +0900 |
parents | |
children | 3be1afb87f82 |
line wrap: on
line source
module lambda ( T : Set) ( t : T ) where A→A : (A : Set ) → ( A → A ) A→A = λ A → λ ( a : A ) → a lemma2 : (A : Set ) → A → A lemma2 A a = {!!} ex1 : {A B : Set} → Set ex1 {A} {B} = ( A → B ) → A → B ex1' : {A B : Set} → Set ex1' {A} {B} = A → B → A → B ex2 : {A : Set} → Set ex2 {A} = A → ( A → A ) ex3 : {A B : Set} → Set ex3 {A}{B} = A → B ex4 : {A B : Set} → Set ex4 {A}{B} = A → B → B ex5 : {A B : Set} → Set ex5 {A}{B} = A → B → A proof5 : {A B : Set } → ex5 {A} {B} proof5 = {!!} postulate S : Set postulate s : S ex6 : {A : Set} → A → S ex6 a = {!!} ex7 : {A : Set} → A → T ex7 a = {!!} ex11 : (A B : Set) → ( A → B ) → A → B ex11 = {!!} ex12 : (A B : Set) → ( A → B ) → A → B ex12 = {!!} ex13 : {A B : Set} → ( A → B ) → A → B ex13 {A} {B} = {!!} ex14 : {A B : Set} → ( A → B ) → A → B ex14 x = {!!} proof5' : {A B : Set} → ex5 {A} {B} proof5' = {!!}