Mercurial > hg > Members > kono > Proof > automaton
view automaton-in-agda/src/gcd.agda @ 193:875eb1fa9694
dividable reorganzaiton
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 16 Jun 2021 08:36:40 +0900 |
parents | 8007206a5a19 |
children | ee25ec7a27f6 |
line wrap: on
line source
{-# OPTIONS --allow-unsolved-metas #-} module gcd where open import Data.Nat open import Data.Nat.Properties open import Data.Empty open import Data.Unit using (⊤ ; tt) open import Relation.Nullary open import Relation.Binary.PropositionalEquality open import Relation.Binary.Definitions open import nat open import logic record Factor (n m : ℕ ) : Set where field factor : ℕ remain : ℕ is-factor : factor * n + remain ≡ m record Dividable (n m : ℕ ) : Set where field factor : ℕ f>1 : factor > 1 is-factor : factor * n + 0 ≡ m open Factor DtoF : {n m : ℕ} → Dividable n m → Factor n m DtoF {n} {m} record { factor = f ; f>1 = f>1 ; is-factor = fa } = record { factor = f ; remain = 0 ; is-factor = fa } FtoD : {n m : ℕ} → (fc : Factor n m) → factor fc > 1 → remain fc ≡ 0 → Dividable n m FtoD {n} {m} record { factor = f ; remain = r ; is-factor = fa } f>1 refl = record { factor = f ; f>1 = f>1 ; is-factor = fa } decf : { n k : ℕ } → ( x : Factor k (suc n) ) → Factor k n decf {n} {k} record { factor = f ; remain = r ; is-factor = fa } = decf1 {n} {k} f r fa where dr : ( n k : ℕ ) → (f r : ℕ) → ℕ dr n zero (suc f) zero = 0 dr n (suc k) (suc f) zero = k dr n k f (suc r) = r dr n zero zero zero = r dr n (suc k) zero zero = r decf1 : { n k : ℕ } → (f r : ℕ) → (f * k + r ≡ suc n) → Factor k n decf1 {n} {k} f (suc r) fa = -- this case must be the first record { factor = f ; remain = r ; is-factor = ( begin -- fa : f * k + suc r ≡ suc n f * k + r ≡⟨ cong pred ( begin suc ( f * k + r ) ≡⟨ +-comm _ r ⟩ r + suc (f * k) ≡⟨ sym (+-assoc r 1 _) ⟩ (r + 1) + f * k ≡⟨ cong (λ t → t + f * k ) (+-comm r 1) ⟩ (suc r ) + f * k ≡⟨ +-comm (suc r) _ ⟩ f * k + suc r ≡⟨ fa ⟩ suc n ∎ ) ⟩ n ∎ ) } where open ≡-Reasoning decf1 {n} {zero} (suc f) zero fa = ⊥-elim ( nat-≡< fa ( begin suc (suc f * zero + zero) ≡⟨ cong suc (+-comm _ zero) ⟩ suc (f * 0) ≡⟨ cong suc (*-comm f zero) ⟩ suc zero ≤⟨ s≤s z≤n ⟩ suc n ∎ )) where open ≤-Reasoning decf1 {n} {suc k} (suc f) zero fa = record { factor = f ; remain = k ; is-factor = ( begin -- fa : suc (k + f * suc k + zero) ≡ suc n f * suc k + k ≡⟨ +-comm _ k ⟩ k + f * suc k ≡⟨ +-comm zero _ ⟩ (k + f * suc k) + zero ≡⟨ cong pred fa ⟩ n ∎ ) } where open ≡-Reasoning decf-step : {i k i0 : ℕ } → (if : Factor k (suc i)) → (i0f : Factor k i0) → Dividable k (suc i - remain if) → Dividable k (i - remain (decf {i} {k} if)) decf-step {i} {k} {i0} if i0f div = decf-step1 {i} {k} {i0} (factor if) (remain if) (is-factor if) {!!} i0f div where decf-step1 : {i k i0 : ℕ } → (f r : ℕ) → (fa : f * k + r ≡ suc i) → f > 1 → (i0f : Factor k i0) → Dividable k (suc i - r) → Dividable k (i - remain (decf record {factor = f ; remain = r ; is-factor = fa})) decf-step1 {i} {k} {i0} f (suc r) fa f>1 i0f div = record { factor = f ; f>1 = {!!} ; is-factor = ( -- f * k + suc r ≡ suc i → f * k + suc r ≡ suc i begin f * k + 0 ≡⟨ +-comm _ 0 ⟩ f * k ≡⟨ sym ( x=y+z→x-z=y {suc i} {_} {suc r} (sym fa) ) ⟩ suc i - suc r ≡⟨ refl ⟩ i - r ≡⟨ refl ⟩ (i - remain (decf (record { factor = f ; remain = suc r ; is-factor = fa }))) ∎ ) } where open ≡-Reasoning decf-step1 {i} {zero} {i0} (suc f) zero fa f>1 i0f div = ⊥-elim (nat-≡< fa ( begin suc (suc f * zero + zero) ≡⟨ cong suc (+-comm _ zero) ⟩ suc (f * 0) ≡⟨ cong suc (*-comm f zero) ⟩ suc zero ≤⟨ s≤s z≤n ⟩ suc i ∎ )) where open ≤-Reasoning -- suc (0 + i) ≡ i0 decf-step1 {i} {suc k} {i0} (suc f) zero fa f>1 i0f div = record { factor = f ; f>1 = {!!} ; is-factor = ( -- suc (k + f * suc k + zero) ≡ suc i → f * suc k + 0 ≡ i - k begin f * suc k + 0 ≡⟨ sym ( x=y+z→x-z=y {i} {_} {k} (begin i ≡⟨ sym (cong pred fa) ⟩ pred (suc f * suc k + zero) ≡⟨ refl ⟩ pred ((suc k + f * suc k) + zero) ≡⟨ cong pred ( +-assoc (suc k) _ zero) ⟩ pred (suc k + (f * suc k + zero)) ≡⟨ refl ⟩ k + (f * suc k + 0) ≡⟨ +-comm k _ ⟩ f * suc k + 0 + k ∎ )) ⟩ i - k ∎ ) } where open ≡-Reasoning ifk0 : ( i0 k : ℕ ) → (i0f : Factor k i0 ) → ( i0=0 : remain i0f ≡ 0 ) → factor i0f * k + 0 ≡ i0 ifk0 i0 k i0f i0=0 = begin factor i0f * k + 0 ≡⟨ cong (λ m → factor i0f * k + m) (sym i0=0) ⟩ factor i0f * k + remain i0f ≡⟨ is-factor i0f ⟩ i0 ∎ where open ≡-Reasoning ifzero : {k : ℕ } → (jf : Factor k zero ) → remain jf ≡ 0 ifzero {k} record { factor = zero ; remain = zero ; is-factor = is-factor } = refl ifzero {zero} record { factor = (suc factor₁) ; remain = zero ; is-factor = is-factor } = refl ifzero {zero} record { factor = (suc f) ; remain = (suc r) ; is-factor = is-factor } = ⊥-elim (nat-≡< (sym is-factor) (subst (λ k → zero < k ) (+-comm (suc r) _) if1 )) where if1 : zero < suc r + suc f * zero if1 = s≤s z≤n gcd1 : ( i i0 j j0 : ℕ ) → ℕ gcd1 zero i0 zero j0 with <-cmp i0 j0 ... | tri< a ¬b ¬c = i0 ... | tri≈ ¬a refl ¬c = i0 ... | tri> ¬a ¬b c = j0 gcd1 zero i0 (suc zero) j0 = 1 gcd1 zero zero (suc (suc j)) j0 = j0 gcd1 zero (suc i0) (suc (suc j)) j0 = gcd1 i0 (suc i0) (suc j) (suc (suc j)) gcd1 (suc zero) i0 zero j0 = 1 gcd1 (suc (suc i)) i0 zero zero = i0 gcd1 (suc (suc i)) i0 zero (suc j0) = gcd1 (suc i) (suc (suc i)) j0 (suc j0) gcd1 (suc i) i0 (suc j) j0 = gcd1 i i0 j j0 gcd : ( i j : ℕ ) → ℕ gcd i j = gcd1 i i j j nfk : (k : ℕ ) → k > 1 → ¬ (Dividable k 1) nfk k k>1 fk1 = ⊥-elim ( nat-≡< (sym (Dividable.is-factor fk1)) {!!} ) gcd-gt : ( i i0 j j0 k : ℕ ) → k > 1 → (if : Factor k i) (i0f : Dividable k i0 ) (jf : Factor k j ) (j0f : Dividable k j0) → Dividable k (i - remain if) → Dividable k (j - remain jf) → Dividable k ( gcd1 i i0 j j0 ) gcd-gt zero i0 zero j0 k k>1 if i0f jf j0f ir=i0 jr=j0 with <-cmp i0 j0 ... | tri< a ¬b ¬c = record { factor = Dividable.factor i0f ; f>1 = {!!} ; is-factor = ifk0 i0 k {!!} {!!} } ... | tri≈ ¬a refl ¬c = record { factor = Dividable.factor i0f ; f>1 = {!!} ; is-factor = ifk0 i0 k {!!} {!!} } ... | tri> ¬a ¬b c = record { factor = Dividable.factor j0f ; f>1 = {!!} ; is-factor = ifk0 j0 k {!!} {!!} } gcd-gt zero i0 (suc zero) j0 k k>1 if i0f jf j0f ir=i0 jr=j0 = {!!} -- can't happen gcd-gt zero zero (suc (suc j)) j0 k k>1 if i0f jf j0f ir=i0 jr=j0 = record { factor = Dividable.factor j0f ; f>1 = {!!} ; is-factor = ifk0 j0 k {!!} {!!} } gcd-gt zero (suc i0) (suc (suc j)) j0 k k>1 if i0f jf j0f ir=i0 jr=j0 = gcd-gt i0 (suc i0) (suc j) (suc (suc j)) k k>1 (decf {!!}) i0f (decf {!!}) {!!} {!!} (decf-step jf {!!} jr=j0 ) gcd-gt (suc zero) i0 zero j0 k k>1 if i0f jf j0f ir=i0 jr=j0 = {!!} -- can't happen gcd-gt (suc (suc i)) i0 zero zero k k>1 if i0f jf j0f ir=i0 jr=j0 = record { factor = Dividable.factor i0f ; f>1 = {!!} ; is-factor = ifk0 i0 k {!!} {!!} } gcd-gt (suc (suc i)) i0 zero (suc j0) k k>1 if i0f jf j0f ir=i0 jr=j0 = gcd-gt (suc i) (suc (suc i)) j0 (suc j0) k k>1 (decf if) {!!} (decf {!!}) j0f (decf-step if {!!} ir=i0 ) {!!} gcd-gt (suc zero) i0 (suc j) j0 k k>1 if i0f jf j0f ir=i0 jr=j0 = gcd-gt zero i0 j j0 k k>1 (decf if) i0f (decf jf) j0f (decf-step if {!!} ir=i0 ) (decf-step jf {!!} jr=j0 ) gcd-gt (suc (suc i)) i0 (suc j) j0 k k>1 if i0f jf j0f ir=i0 jr=j0 = gcd-gt (suc i) i0 j j0 k k>1 (decf if) i0f (decf jf) j0f (decf-step if {!!} ir=i0 ) (decf-step jf {!!} jr=j0 ) gcd-div : ( i j k : ℕ ) → k > 1 → (if : Factor k i) (jf : Factor k j ) → remain if ≡ 0 → remain jf ≡ 0 → Dividable k ( gcd i j ) gcd-div i j k k>1 if jf i0=0 j0=0 = gcd-gt i i j j k k>1 if {!!} jf {!!} {!!} {!!} where gf4 : {m n : ℕ} → n ≡ 0 → n + m ≡ m gf4 {m} {n} eq = begin n + m ≡⟨ cong (λ k → k + m) eq ⟩ 0 + m ≡⟨ refl ⟩ m ∎ where open ≡-Reasoning -- gcd26 : { n m : ℕ} → n > 1 → m > 1 → n - m > 0 → gcd n m ≡ gcd (n - m) m -- gcd27 : { n m : ℕ} → n > 1 → m > 1 → n - m > 0 → gcd n k ≡ k → k ≤ n gcd22 : ( i i0 o o0 : ℕ ) → gcd1 (suc i) i0 (suc o) o0 ≡ gcd1 i i0 o o0 gcd22 zero i0 zero o0 = refl gcd22 zero i0 (suc o) o0 = refl gcd22 (suc i) i0 zero o0 = refl gcd22 (suc i) i0 (suc o) o0 = refl gcd20 : (i : ℕ) → gcd i 0 ≡ i gcd20 zero = refl gcd20 (suc i) = gcd201 (suc i) where gcd201 : (i : ℕ ) → gcd1 i i zero zero ≡ i gcd201 zero = refl gcd201 (suc zero) = refl gcd201 (suc (suc i)) = refl gcdmm : (n m : ℕ) → gcd1 n m n m ≡ m gcdmm zero m with <-cmp m m ... | tri< a ¬b ¬c = refl ... | tri≈ ¬a refl ¬c = refl ... | tri> ¬a ¬b c = refl gcdmm (suc n) m = subst (λ k → k ≡ m) (sym (gcd22 n m n m )) (gcdmm n m ) gcdsym2 : (i j : ℕ) → gcd1 zero i zero j ≡ gcd1 zero j zero i gcdsym2 i j with <-cmp i j | <-cmp j i ... | tri< a ¬b ¬c | tri< a₁ ¬b₁ ¬c₁ = ⊥-elim (nat-<> a a₁) ... | tri< a ¬b ¬c | tri≈ ¬a b ¬c₁ = ⊥-elim (nat-≡< (sym b) a) ... | tri< a ¬b ¬c | tri> ¬a ¬b₁ c = refl ... | tri≈ ¬a b ¬c | tri< a ¬b ¬c₁ = ⊥-elim (nat-≡< (sym b) a) ... | tri≈ ¬a refl ¬c | tri≈ ¬a₁ refl ¬c₁ = refl ... | tri≈ ¬a b ¬c | tri> ¬a₁ ¬b c = ⊥-elim (nat-≡< b c) ... | tri> ¬a ¬b c | tri< a ¬b₁ ¬c = refl ... | tri> ¬a ¬b c | tri≈ ¬a₁ b ¬c = ⊥-elim (nat-≡< b c) ... | tri> ¬a ¬b c | tri> ¬a₁ ¬b₁ c₁ = ⊥-elim (nat-<> c c₁) gcdsym1 : ( i i0 j j0 : ℕ ) → gcd1 i i0 j j0 ≡ gcd1 j j0 i i0 gcdsym1 zero zero zero zero = refl gcdsym1 zero zero zero (suc j0) = refl gcdsym1 zero (suc i0) zero zero = refl gcdsym1 zero (suc i0) zero (suc j0) = gcdsym2 (suc i0) (suc j0) gcdsym1 zero zero (suc zero) j0 = refl gcdsym1 zero zero (suc (suc j)) j0 = refl gcdsym1 zero (suc i0) (suc zero) j0 = refl gcdsym1 zero (suc i0) (suc (suc j)) j0 = gcdsym1 i0 (suc i0) (suc j) (suc (suc j)) gcdsym1 (suc zero) i0 zero j0 = refl gcdsym1 (suc (suc i)) i0 zero zero = refl gcdsym1 (suc (suc i)) i0 zero (suc j0) = gcdsym1 (suc i) (suc (suc i))j0 (suc j0) gcdsym1 (suc i) i0 (suc j) j0 = subst₂ (λ j k → j ≡ k ) (sym (gcd22 i _ _ _)) (sym (gcd22 j _ _ _)) (gcdsym1 i i0 j j0 ) gcdsym : { n m : ℕ} → gcd n m ≡ gcd m n gcdsym {n} {m} = gcdsym1 n n m m gcd11 : ( i : ℕ ) → gcd i i ≡ i gcd11 i = gcdmm i i gcd203 : (i : ℕ) → gcd1 (suc i) (suc i) i i ≡ 1 gcd203 zero = refl gcd203 (suc i) = gcd205 (suc i) where gcd205 : (j : ℕ) → gcd1 (suc j) (suc (suc i)) j (suc i) ≡ 1 gcd205 zero = refl gcd205 (suc j) = subst (λ k → k ≡ 1) (gcd22 (suc j) (suc (suc i)) j (suc i)) (gcd205 j) gcd204 : (i : ℕ) → gcd1 1 1 i i ≡ 1 gcd204 zero = refl gcd204 (suc zero) = refl gcd204 (suc (suc zero)) = refl gcd204 (suc (suc (suc i))) = gcd204 (suc (suc i)) gcd2 : ( i j : ℕ ) → gcd (i + j) j ≡ gcd i j gcd2 i j = gcd200 i i j j refl refl where gcd202 : (i j1 : ℕ) → (i + suc j1) ≡ suc (i + j1) gcd202 zero j1 = refl gcd202 (suc i) j1 = cong suc (gcd202 i j1) gcd201 : (i i0 j j0 j1 : ℕ) → gcd1 (i + j1) (i0 + suc j) j1 j0 ≡ gcd1 i (i0 + suc j) zero j0 gcd201 i i0 j j0 zero = subst (λ k → gcd1 k (i0 + suc j) zero j0 ≡ gcd1 i (i0 + suc j) zero j0 ) (+-comm zero i) refl gcd201 i i0 j j0 (suc j1) = begin gcd1 (i + suc j1) (i0 + suc j) (suc j1) j0 ≡⟨ cong (λ k → gcd1 k (i0 + suc j) (suc j1) j0 ) (gcd202 i j1) ⟩ gcd1 (suc (i + j1)) (i0 + suc j) (suc j1) j0 ≡⟨ gcd22 (i + j1) (i0 + suc j) j1 j0 ⟩ gcd1 (i + j1) (i0 + suc j) j1 j0 ≡⟨ gcd201 i i0 j j0 j1 ⟩ gcd1 i (i0 + suc j) zero j0 ∎ where open ≡-Reasoning gcd200 : (i i0 j j0 : ℕ) → i ≡ i0 → j ≡ j0 → gcd1 (i + j) (i0 + j) j j0 ≡ gcd1 i i j0 j0 gcd200 i .i zero .0 refl refl = subst (λ k → gcd1 k k zero zero ≡ gcd1 i i zero zero ) (+-comm zero i) refl gcd200 (suc (suc i)) i0 (suc j) (suc j0) i=i0 j=j0 = gcd201 (suc (suc i)) i0 j (suc j0) (suc j) gcd200 zero zero (suc zero) .1 i=i0 refl = refl gcd200 zero zero (suc (suc j)) .(suc (suc j)) i=i0 refl = begin gcd1 (zero + suc (suc j)) (zero + suc (suc j)) (suc (suc j)) (suc (suc j)) ≡⟨ gcdmm (suc (suc j)) (suc (suc j)) ⟩ suc (suc j) ≡⟨ sym (gcd20 (suc (suc j))) ⟩ gcd1 zero zero (suc (suc j)) (suc (suc j)) ∎ where open ≡-Reasoning gcd200 zero (suc i0) (suc j) .(suc j) () refl gcd200 (suc zero) .1 (suc j) .(suc j) refl refl = begin gcd1 (1 + suc j) (1 + suc j) (suc j) (suc j) ≡⟨ gcd203 (suc j) ⟩ 1 ≡⟨ sym ( gcd204 (suc j)) ⟩ gcd1 1 1 (suc j) (suc j) ∎ where open ≡-Reasoning gcd200 (suc (suc i)) i0 (suc j) zero i=i0 () gcd52 : {i : ℕ } → 1 < suc (suc i) gcd52 {zero} = a<sa gcd52 {suc i} = <-trans (gcd52 {i}) a<sa gcd50 : (i i0 j j0 : ℕ) → 1 < i0 → i ≤ i0 → j ≤ j0 → gcd1 i i0 j j0 ≤ i0 gcd50 zero i0 zero j0 0<i i<i0 j<j0 with <-cmp i0 j0 ... | tri< a ¬b ¬c = ≤-refl ... | tri≈ ¬a refl ¬c = ≤-refl ... | tri> ¬a ¬b c = ≤-trans refl-≤s c gcd50 zero (suc i0) (suc zero) j0 0<i i<i0 j<j0 = gcd51 0<i where gcd51 : 1 < suc i0 → gcd1 zero (suc i0) 1 j0 ≤ suc i0 gcd51 1<i = <to≤ 1<i gcd50 zero (suc i0) (suc (suc j)) j0 0<i i<i0 j<j0 = gcd50 i0 (suc i0) (suc j) (suc (suc j)) 0<i refl-≤s refl-≤s gcd50 (suc zero) i0 zero j0 0<i i<i0 j<j0 = <to≤ 0<i gcd50 (suc (suc i)) i0 zero zero 0<i i<i0 j<j0 = ≤-refl gcd50 (suc (suc i)) i0 zero (suc j0) 0<i i<i0 j<j0 = ≤-trans (gcd50 (suc i) (suc (suc i)) j0 (suc j0) gcd52 refl-≤s refl-≤s) i<i0 gcd50 (suc i) i0 (suc j) j0 0<i i<i0 j<j0 = subst (λ k → k ≤ i0 ) (sym (gcd22 i i0 j j0)) (gcd50 i i0 j j0 0<i (≤-trans refl-≤s i<i0) (≤-trans refl-≤s j<j0)) gcd5 : ( n k : ℕ ) → 1 < n → gcd n k ≤ n gcd5 n k 0<n = gcd50 n n k k 0<n ≤-refl ≤-refl gcd6 : ( n k : ℕ ) → 1 < n → gcd k n ≤ n gcd6 n k 1<n = subst (λ m → m ≤ n) (gcdsym {n} {k}) (gcd5 n k 1<n) gcd4 : ( n k : ℕ ) → 1 < n → gcd n k ≡ k → k ≤ n gcd4 n k 1<n eq = subst (λ m → m ≤ n ) eq (gcd5 n k 1<n) gcdmul+1 : ( m n : ℕ ) → gcd (m * n + 1) n ≡ 1 gcdmul+1 zero n = gcd204 n gcdmul+1 (suc m) n = begin gcd (suc m * n + 1) n ≡⟨⟩ gcd (n + m * n + 1) n ≡⟨ cong (λ k → gcd k n ) (begin n + m * n + 1 ≡⟨ cong (λ k → k + 1) (+-comm n _) ⟩ m * n + n + 1 ≡⟨ +-assoc (m * n) _ _ ⟩ m * n + (n + 1) ≡⟨ cong (λ k → m * n + k) (+-comm n _) ⟩ m * n + (1 + n) ≡⟨ sym ( +-assoc (m * n) _ _ ) ⟩ m * n + 1 + n ∎ ) ⟩ gcd (m * n + 1 + n) n ≡⟨ gcd2 (m * n + 1) n ⟩ gcd (m * n + 1) n ≡⟨ gcdmul+1 m n ⟩ 1 ∎ where open ≡-Reasoning