Mercurial > hg > Members > kono > Proof > automaton
view automaton-in-agda/src/non-regular.agda @ 214:906b43b94228
gcd-dividable done
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 21 Jun 2021 09:40:52 +0900 |
parents | 3fa72793620b |
children | 1c8ed1220489 |
line wrap: on
line source
module non-regular where open import Data.Nat open import Data.List open import Relation.Binary.PropositionalEquality hiding ( [_] ) open import logic open import automaton open import finiteSet open import Relation.Nullary inputnn : ( n : ℕ ) → { Σ : Set } → ( x y : Σ ) → List Σ → List Σ inputnn zero {_} _ _ s = s inputnn (suc n) x y s = x ∷ ( inputnn n x y ( y ∷ s ) ) lemmaNN : { Q : Set } { Σ : Set } → ( x y : Σ ) → ¬ (x ≡ y) → FiniteSet Q → (M : Automaton Q Σ) (q : Q) → ¬ ( (n : ℕ) → accept M q ( inputnn n x y [] ) ≡ true ) lemmaNN = {!!}