Mercurial > hg > Members > kono > Proof > automaton
view automaton-in-agda/src/omega-automaton.agda @ 214:906b43b94228
gcd-dividable done
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 21 Jun 2021 09:40:52 +0900 |
parents | 3fa72793620b |
children | a3fb231feeb9 |
line wrap: on
line source
module omega-automaton where open import Level renaming ( suc to succ ; zero to Zero ) open import Data.Nat open import Data.List open import Data.Maybe -- open import Data.Bool using ( Bool ; true ; false ; _∧_ ) renaming ( not to negate ) open import Relation.Binary.PropositionalEquality hiding ( [_] ) open import Relation.Nullary -- using (not_; Dec; yes; no) open import Data.Empty open import logic open import automaton open Automaton ω-run : { Q Σ : Set } → (Ω : Automaton Q Σ ) → (astart : Q ) → ℕ → ( ℕ → Σ ) → Q ω-run Ω x zero s = x ω-run Ω x (suc n) s = δ Ω (ω-run Ω x n s) ( s n ) -- -- accept as Buchi automaton -- record Buchi { Q Σ : Set } (Ω : Automaton Q Σ ) ( S : ℕ → Σ ) : Set where field from : ℕ stay : (x : Q) → (n : ℕ ) → n > from → aend Ω ( ω-run Ω x n S ) ≡ true open Buchi -- after sometimes, always p -- -- not p -- ------------> -- <> [] p * <> [] p -- <----------- -- p -- -- accept as Muller automaton -- record Muller { Q Σ : Set } (Ω : Automaton Q Σ ) ( S : ℕ → Σ ) : Set where field next : (n : ℕ ) → ℕ infinite : (x : Q) → (n : ℕ ) → aend Ω ( ω-run Ω x (n + (next n)) S ) ≡ true -- always sometimes p -- -- not p -- ------------> -- [] <> p * [] <> p -- <----------- -- p data States3 : Set where ts* : States3 ts : States3 transition3 : States3 → Bool → States3 transition3 ts* true = ts* transition3 ts* false = ts transition3 ts true = ts* transition3 ts false = ts mark1 : States3 → Bool mark1 ts* = true mark1 ts = false ωa1 : Automaton States3 Bool ωa1 = record { δ = transition3 ; aend = mark1 } true-seq : ℕ → Bool true-seq _ = true false-seq : ℕ → Bool false-seq _ = false flip-seq : ℕ → Bool flip-seq zero = false flip-seq (suc n) = not ( flip-seq n ) lemma0 : Muller ωa1 flip-seq lemma0 = record { next = λ n → suc (suc n) ; infinite = lemma01 } where lemma01 : (x : States3) (n : ℕ) → aend ωa1 (ω-run ωa1 x (n + suc (suc n)) flip-seq) ≡ true lemma01 = {!!} lemma1 : Buchi ωa1 true-seq lemma1 = record { from = zero ; stay = {!!} } where lem1 : ( n : ℕ ) → n > zero → aend ωa1 (ω-run ωa1 {!!} n true-seq ) ≡ true lem1 zero () lem1 (suc n) (s≤s z≤n) with ω-run ωa1 {!!} n true-seq lem1 (suc n) (s≤s z≤n) | ts* = {!!} lem1 (suc n) (s≤s z≤n) | ts = {!!} ωa2 : Automaton States3 Bool ωa2 = record { δ = transition3 ; aend = λ x → not ( mark1 x ) } flip-dec : (n : ℕ ) → Dec ( flip-seq n ≡ true ) flip-dec n with flip-seq n flip-dec n | false = no λ () flip-dec n | true = yes refl flip-dec1 : (n : ℕ ) → flip-seq (suc n) ≡ ( not ( flip-seq n ) ) flip-dec1 n = let open ≡-Reasoning in flip-seq (suc n ) ≡⟨⟩ ( not ( flip-seq n ) ) ∎ flip-dec2 : (n : ℕ ) → not flip-seq (suc n) ≡ flip-seq n flip-dec2 n = {!!} record flipProperty : Set where field flipP : (n : ℕ) → ω-run ωa2 {!!} {!!} ≡ ω-run ωa2 {!!} {!!} lemma2 : Muller ωa2 flip-seq lemma2 = record { next = next ; infinite = {!!} } where next : ℕ → ℕ next = {!!} infinite' : (n m : ℕ) → n ≥″ m → aend ωa2 {!!} ≡ true → aend ωa2 {!!} ≡ true infinite' = {!!} infinite : (n : ℕ) → aend ωa2 {!!} ≡ true infinite = {!!} lemma3 : Buchi ωa1 false-seq → ⊥ lemma3 = {!!} lemma4 : Muller ωa1 flip-seq → ⊥ lemma4 = {!!}