Mercurial > hg > Members > kono > Proof > automaton
view automaton-in-agda/src/turing.agda @ 341:9120a5872a5b
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 11 Jul 2023 11:04:00 +0900 |
parents | 6f3636fbc481 |
children | c7ad8d2dc157 |
line wrap: on
line source
{-# OPTIONS --allow-unsolved-metas #-} module turing where open import Level renaming ( suc to succ ; zero to Zero ) open import Data.Nat -- hiding ( erase ) open import Data.List open import Data.Maybe hiding ( map ) -- open import Data.Bool using ( Bool ; true ; false ) renaming ( not to negate ) open import Relation.Binary.PropositionalEquality hiding ( [_] ) open import Relation.Nullary using (¬_; Dec; yes; no) open import Level renaming ( suc to succ ; zero to Zero ) open import Data.Product hiding ( map ) open import logic data Write ( Σ : Set ) : Set where write : Σ → Write Σ wnone : Write Σ -- erase write tnone data Move : Set where left : Move right : Move mnone : Move -- at tδ both stack is poped -- write S push S , push SR -- erase push SL , push tone -- none push SL , push SR -- left push SR , pop -- right pop , push SL {-# TERMINATING #-} move : {Q Σ : Set } → { tnone : Σ} → {tδ : Q → Σ → Q × ( Write Σ ) × Move } → (q : Q ) ( L : List Σ ) ( L : List Σ ) → ( Q × List Σ × List Σ ) move {Q} {Σ} {tnone} {tδ} q L [] = move {Q} {Σ} {tnone} {tδ} q L ( tnone ∷ [] ) move {Q} {Σ} {tnone} {tδ} q [] R = move {Q} {Σ} {tnone} {tδ} q ( tnone ∷ [] ) R move {Q} {Σ} {tnone} {tδ} q ( LH ∷ LT ) ( RH ∷ RT ) with tδ q LH ... | nq , write x , left = ( nq , ( RH ∷ x ∷ LT ) , RT ) ... | nq , write x , right = ( nq , LT , ( x ∷ RH ∷ RT ) ) ... | nq , write x , mnone = ( nq , ( x ∷ LT ) , ( RH ∷ RT ) ) ... | nq , wnone , left = ( nq , ( RH ∷ LH ∷ LT ) , RT ) ... | nq , wnone , right = ( nq , LT , ( LH ∷ RH ∷ RT ) ) ... | nq , wnone , mnone = ( nq , ( LH ∷ LT ) , ( RH ∷ RT ) ) {-# TERMINATING #-} move-loop : {Q Σ : Set } → {tend : Q → Bool} → { tnone : Σ} → {tδ : Q → Σ → Q × ( Write Σ ) × Move } → (q : Q ) ( L : List Σ ) ( L : List Σ ) → ( Q × List Σ × List Σ ) move-loop {Q} {Σ} {tend} {tnone} {tδ} q L R with tend q ... | true = ( q , L , R ) ... | flase = move-loop {Q} {Σ} {tend} {tnone} {tδ} ( proj₁ next ) ( proj₁ ( proj₂ next ) ) ( proj₂ ( proj₂ next ) ) where next = move {Q} {Σ} {tnone} {tδ} q L R {-# TERMINATING #-} move0 : {Q Σ : Set } ( tend : Q → Bool ) (tnone : Σ ) (tδ : Q → Σ → Q × ( Write Σ ) × Move) (q : Q ) ( L : List Σ ) ( L : List Σ ) → ( Q × List Σ × List Σ ) move0 tend tnone tδ q L R with tend q ... | true = ( q , L , R ) move0 tend tnone tδ q L [] | false = move0 tend tnone tδ q L ( tnone ∷ [] ) move0 tend tnone tδ q [] R | false = move0 tend tnone tδ q ( tnone ∷ [] ) R move0 tend tnone tδ q ( LH ∷ LT ) ( RH ∷ RT ) | false with tδ q LH ... | nq , write x , left = move0 tend tnone tδ nq ( RH ∷ x ∷ LT ) RT ... | nq , write x , right = move0 tend tnone tδ nq LT ( x ∷ RH ∷ RT ) ... | nq , write x , mnone = move0 tend tnone tδ nq ( x ∷ LT ) ( RH ∷ RT ) ... | nq , wnone , left = move0 tend tnone tδ nq ( RH ∷ LH ∷ LT ) RT ... | nq , wnone , right = move0 tend tnone tδ nq LT ( LH ∷ RH ∷ RT ) ... | nq , wnone , mnone = move0 tend tnone tδ nq ( LH ∷ LT ) ( RH ∷ RT ) record Turing ( Q : Set ) ( Σ : Set ) : Set where field tδ : Q → Σ → Q × ( Write Σ ) × Move tstart : Q tend : Q → Bool tnone : Σ taccept : List Σ → ( Q × List Σ × List Σ ) taccept L = move0 tend tnone tδ tstart L [] open import automaton -- ATuring : {Σ : Set } → Automaton (List Σ) Σ -- ATuring = record { δ = {!!} ; aend = {!!} } open import automaton open Automaton {-# TERMINATING #-} move1 : {Q Σ : Set } ( tend : Q → Bool ) (tnone : Σ ) (δ : Q → Σ → Q ) (tδ : Q → Σ → Write Σ × Move) (q : Q ) ( L : List Σ ) ( R : List Σ ) → Q × List Σ × List Σ move1 tend tnone δ tδ q L R with tend q ... | true = ( q , L , R ) move1 tend tnone δ tδ q L [] | false = move1 tend tnone δ tδ q L ( tnone ∷ [] ) move1 tend tnone δ tδ q [] R | false = move1 tend tnone δ tδ q ( tnone ∷ [] ) R move1 tend tnone δ tδ q ( LH ∷ LT ) ( RH ∷ RT ) | false with tδ (δ q LH) LH ... | write x , left = move1 tend tnone δ tδ (δ q LH) ( RH ∷ x ∷ LT ) RT ... | write x , right = move1 tend tnone δ tδ (δ q LH) LT ( x ∷ RH ∷ RT ) ... | write x , mnone = move1 tend tnone δ tδ (δ q LH) ( x ∷ LT ) ( RH ∷ RT ) ... | wnone , left = move1 tend tnone δ tδ (δ q LH) ( RH ∷ LH ∷ LT ) RT ... | wnone , right = move1 tend tnone δ tδ (δ q LH) LT ( LH ∷ RH ∷ RT ) ... | wnone , mnone = move1 tend tnone δ tδ (δ q LH) ( LH ∷ LT ) ( RH ∷ RT ) record TM ( Q : Set ) ( Σ : Set ) : Set where field automaton : Automaton Q Σ tδ : Q → Σ → Write Σ × Move tnone : Σ taccept : Q → List Σ → ( Q × List Σ × List Σ ) taccept q L = move1 (aend automaton) tnone (δ automaton) tδ q L [] data CopyStates : Set where s1 : CopyStates s2 : CopyStates s3 : CopyStates s4 : CopyStates s5 : CopyStates H : CopyStates Copyδ : CopyStates → ℕ → CopyStates × ( Write ℕ ) × Move Copyδ s1 0 = H , wnone , mnone Copyδ s1 1 = s2 , write 0 , right Copyδ s2 0 = s3 , write 0 , right Copyδ s2 1 = s2 , write 1 , right Copyδ s3 0 = s4 , write 1 , left Copyδ s3 1 = s3 , write 1 , right Copyδ s4 0 = s5 , write 0 , left Copyδ s4 1 = s4 , write 1 , left Copyδ s5 0 = s1 , write 1 , right Copyδ s5 1 = s5 , write 1 , left Copyδ H _ = H , wnone , mnone Copyδ _ (suc (suc _)) = H , wnone , mnone copyMachine : Turing CopyStates ℕ copyMachine = record { tδ = Copyδ ; tstart = s1 ; tend = tend ; tnone = 0 } where tend : CopyStates → Bool tend H = true tend _ = false copyTM : TM CopyStates ℕ copyTM = record { automaton = record { δ = λ q i → proj₁ (Copyδ q i) ; aend = tend } ; tδ = λ q i → proj₂ (Copyδ q i ) ; tnone = 0 } where tend : CopyStates → Bool tend H = true tend _ = false test1 : CopyStates × ( List ℕ ) × ( List ℕ ) test1 = Turing.taccept copyMachine ( 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ [] ) test2 : ℕ → CopyStates × ( List ℕ ) × ( List ℕ ) test2 n = loop n (Turing.tstart copyMachine) ( 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ [] ) [] where loop : ℕ → CopyStates → ( List ℕ ) → ( List ℕ ) → CopyStates × ( List ℕ ) × ( List ℕ ) loop zero q L R = ( q , L , R ) loop (suc n) q L R = loop n ( proj₁ t1 ) ( proj₁ ( proj₂ t1 ) ) ( proj₂ ( proj₂ t1 ) ) where t1 = move {CopyStates} {ℕ} {0} {Copyδ} q L R -- testn = map (\ n -> test2 n) ( 0 ∷ 1 ∷ 2 ∷ 3 ∷ 4 ∷ 5 ∷ 6 ∷ [] ) testn : ℕ → List ( CopyStates × ( List ℕ ) × ( List ℕ ) ) testn 0 = test2 0 ∷ [] testn (suc n) = test2 n ∷ testn n