Mercurial > hg > Members > kono > Proof > automaton
view automaton-in-agda/src/pushdown.agda @ 318:91781b7c65a8
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 06 Jan 2022 07:27:52 +0900 |
parents | 7828beb7d849 |
children | 6f3636fbc481 |
line wrap: on
line source
module pushdown where open import Level renaming ( suc to succ ; zero to Zero ) open import Data.Nat open import Data.List open import Data.Maybe -- open import Data.Bool using ( Bool ; true ; false ) open import Relation.Binary.PropositionalEquality hiding ( [_] ) open import Relation.Nullary using (¬_; Dec; yes; no) open import Level renaming ( suc to succ ; zero to Zero ) -- open import Data.Product open import logic open import automaton data PushDown ( Γ : Set ) : Set where pop : PushDown Γ push : Γ → PushDown Γ none : PushDown Γ record PushDownAutomaton ( Q : Set ) ( Σ : Set ) ( Γ : Set ) : Set where field pδ : Q → Σ → Γ → Q ∧ ( PushDown Γ ) pok : Q → Bool pempty : Γ pmoves : Q → List Γ → Σ → ( Q ∧ List Γ ) pmoves q [] i with pδ q i pempty pmoves q [] i | ⟪ qn , pop ⟫ = ⟪ qn , [] ⟫ pmoves q [] i | ⟪ qn , push x ⟫ = ⟪ qn , ( x ∷ [] ) ⟫ pmoves q [] i | ⟪ qn , none ⟫ = ⟪ qn , [] ⟫ pmoves q ( H ∷ T ) i with pδ q i H pmoves q (H ∷ T) i | ⟪ qn , pop ⟫ = ⟪ qn , T ⟫ pmoves q (H ∷ T) i | ⟪ qn , none ⟫ = ⟪ qn , (H ∷ T) ⟫ pmoves q (H ∷ T) i | ⟪ qn , push x ⟫ = ⟪ qn , x ∷ H ∷ T ⟫ paccept : (q : Q ) ( In : List Σ ) ( sp : List Γ ) → Bool paccept q [] [] = pok q paccept q ( H ∷ T) [] with pδ q H pempty paccept q (H ∷ T) [] | ⟪ qn , pop ⟫ = paccept qn T [] paccept q (H ∷ T) [] | ⟪ qn , none ⟫ = paccept qn T [] paccept q (H ∷ T) [] | ⟪ qn , push x ⟫ = paccept qn T (x ∷ [] ) paccept q [] (_ ∷ _ ) = false paccept q ( H ∷ T ) ( SH ∷ ST ) with pδ q H SH ... | ⟪ nq , pop ⟫ = paccept nq T ST ... | ⟪ nq , none ⟫ = paccept nq T (SH ∷ ST) ... | ⟪ nq , push ns ⟫ = paccept nq T ( ns ∷ SH ∷ ST ) record PDA ( Q : Set ) ( Σ : Set ) ( Γ : Set ) : Set where field automaton : Automaton Q Σ pδ : Q → PushDown Γ open Automaton paccept : (q : Q ) ( In : List Σ ) ( sp : List Γ ) → Bool paccept q [] [] = aend automaton q paccept q (H ∷ T) [] with pδ (δ automaton q H) paccept q (H ∷ T) [] | pop = paccept (δ automaton q H) T [] paccept q (H ∷ T) [] | none = paccept (δ automaton q H) T [] paccept q (H ∷ T) [] | push x = paccept (δ automaton q H) T (x ∷ [] ) paccept q [] (_ ∷ _ ) = false paccept q ( H ∷ T ) ( SH ∷ ST ) with pδ (δ automaton q H) ... | pop = paccept (δ automaton q H) T ST ... | none = paccept (δ automaton q H) T (SH ∷ ST) ... | push ns = paccept (δ automaton q H) T ( ns ∷ SH ∷ ST ) data States0 : Set where sr : States0 data In2 : Set where i0 : In2 i1 : In2 pnn : PushDownAutomaton States0 In2 States0 pnn = record { pδ = pδ ; pempty = sr ; pok = λ q → true } where pδ : States0 → In2 → States0 → States0 ∧ PushDown States0 pδ sr i0 _ = ⟪ sr , push sr ⟫ pδ sr i1 _ = ⟪ sr , pop ⟫ data States2 : Set where ph1 : States2 ph2 : States2 phf : States2 pnnp : PDA States2 In2 States2 pnnp = record { automaton = record { aend = aend ; δ = δ } ; pδ = pδ } where δ : States2 → In2 → States2 δ ph1 i0 = ph1 δ ph1 i1 = ph2 δ ph2 i1 = ph2 δ _ _ = phf aend : States2 → Bool aend ph2 = true aend _ = false pδ : States2 → PushDown States2 pδ ph1 = push ph1 pδ ph2 = pop pδ phf = none data States1 : Set where ss : States1 st : States1 pn1 : PushDownAutomaton States1 In2 States1 pn1 = record { pδ = pδ ; pempty = ss ; pok = pok1 } where pok1 : States1 → Bool pok1 ss = false pok1 st = true pδ : States1 → In2 → States1 → States1 ∧ PushDown States1 pδ ss i0 _ = ⟪ ss , push ss ⟫ pδ ss i1 _ = ⟪ st , pop ⟫ pδ st i0 _ = ⟪ st , push ss ⟫ pδ st i1 _ = ⟪ st , pop ⟫ test1 = PushDownAutomaton.paccept pnn sr ( i0 ∷ i0 ∷ i1 ∷ i1 ∷ [] ) [] test2 = PushDownAutomaton.paccept pnn sr ( i0 ∷ i0 ∷ i1 ∷ i0 ∷ [] ) [] test3 = PushDownAutomaton.pmoves pnn sr [] i0 test4 = PushDownAutomaton.paccept pnn sr ( i0 ∷ i0 ∷ i1 ∷ i1 ∷ i0 ∷ i1 ∷ [] ) [] test5 = PushDownAutomaton.paccept pn1 ss ( i0 ∷ i0 ∷ i1 ∷ i1 ∷ [] ) [] test6 = PushDownAutomaton.paccept pn1 ss ( i0 ∷ i0 ∷ i1 ∷ i1 ∷ i0 ∷ i1 ∷ [] ) []