Mercurial > hg > Members > kono > Proof > automaton
view a02/agda/lambda.agda @ 252:9fc9e19f2c37
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 29 Jun 2021 20:03:32 +0900 |
parents | b3f05cd08d24 |
children | e5cf49902db3 |
line wrap: on
line source
module lambda ( T : Set) ( t : T ) where A→A : (A : Set ) → ( A → A ) A→A = λ A → λ ( a : A ) → a lemma2 : (A : Set ) → A → A lemma2 A a = {!!} →intro : {A B : Set } → A → B → ( A → B ) →intro _ b = λ x → b →elim : {A B : Set } → A → ( A → B ) → B →elim a f = f a ex1 : {A B : Set} → Set ex1 {A} {B} = ( A → B ) → A → B ex1' : {A B : Set} → Set ex1' {A} {B} = A → B → A → B ex2 : {A : Set} → Set ex2 {A} = A → ( A → A ) proof2 : {A : Set } → ex2 {A} proof2 = {!!} ex3 : {A B : Set} → A → B ex3 a = {!!} ex4 : {A B : Set} → A → B → B ex4 {A}{B} a b = {!!} ex5 : {A B : Set} → A → B → A ex5 = {!!} postulate Domain : Set Range : Set r : Range ex6 : Domain → Range ex6 a = {!!} ex7 : {A : Set} → A → T ex7 a = {!!} ex11 : (A B : Set) → ( A → B ) → A → B ex11 = {!!} ex12 : (A B : Set) → ( A → B ) → A → B ex12 = {!!} ex13 : {A B : Set} → ( A → B ) → A → B ex13 {A} {B} = {!!} ex14 : {A B : Set} → ( A → B ) → A → B ex14 x = {!!}