Mercurial > hg > Members > kono > Proof > automaton
view agda/finiteSet.agda @ 114:a7364dfcc51e
finite-or
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 18 Nov 2019 23:53:47 +0900 |
parents | 58b009043733 |
children | 1b54c0623d01 |
line wrap: on
line source
{-# OPTIONS --allow-unsolved-metas #-} module finiteSet where open import Data.Nat hiding ( _≟_ ) open import Data.Fin renaming ( _<_ to _<<_ ) hiding (_≤_) open import Data.Fin.Properties open import Data.Empty open import Relation.Nullary open import Relation.Binary.Core open import Relation.Binary.PropositionalEquality open import logic open import nat open import Data.Nat.Properties hiding ( _≟_ ) open import Relation.Binary.HeterogeneousEquality as HE using (_≅_ ) record Found ( Q : Set ) (p : Q → Bool ) : Set where field found-q : Q found-p : p found-q ≡ true record FiniteSet ( Q : Set ) { n : ℕ } : Set where field Q←F : Fin n → Q F←Q : Q → Fin n finiso→ : (q : Q) → Q←F ( F←Q q ) ≡ q finiso← : (f : Fin n ) → F←Q ( Q←F f ) ≡ f finℕ : ℕ finℕ = n lt0 : (n : ℕ) → n Data.Nat.≤ n lt0 zero = z≤n lt0 (suc n) = s≤s (lt0 n) lt2 : {m n : ℕ} → m < n → m Data.Nat.≤ n lt2 {zero} lt = z≤n lt2 {suc m} {zero} () lt2 {suc m} {suc n} (s≤s lt) = s≤s (lt2 lt) exists1 : (m : ℕ ) → m Data.Nat.≤ n → (Q → Bool) → Bool exists1 zero _ _ = false exists1 ( suc m ) m<n p = p (Q←F (fromℕ≤ {m} {n} m<n)) \/ exists1 m (lt2 m<n) p exists : ( Q → Bool ) → Bool exists p = exists1 n (lt0 n) p open import Data.List list1 : (m : ℕ ) → m Data.Nat.≤ n → (Q → Bool) → List Q list1 zero _ _ = [] list1 ( suc m ) m<n p with bool-≡-? (p (Q←F (fromℕ≤ {m} {n} m<n))) true ... | yes _ = Q←F (fromℕ≤ {m} {n} m<n) ∷ list1 m (lt2 m<n) p ... | no _ = list1 m (lt2 m<n) p to-list : ( Q → Bool ) → List Q to-list p = list1 n (lt0 n) p equal? : Q → Q → Bool equal? q0 q1 with F←Q q0 ≟ F←Q q1 ... | yes p = true ... | no ¬p = false equal→refl : { x y : Q } → equal? x y ≡ true → x ≡ y equal→refl {q0} {q1} eq with F←Q q0 ≟ F←Q q1 equal→refl {q0} {q1} refl | yes eq = begin q0 ≡⟨ sym ( finiso→ q0) ⟩ Q←F (F←Q q0) ≡⟨ cong (λ k → Q←F k ) eq ⟩ Q←F (F←Q q1) ≡⟨ finiso→ q1 ⟩ q1 ∎ where open ≡-Reasoning equal→refl {q0} {q1} () | no ne equal?-refl : {q : Q} → equal? q q ≡ true equal?-refl {q} with F←Q q ≟ F←Q q ... | yes p = refl ... | no ne = ⊥-elim (ne refl) fin<n : {n : ℕ} {f : Fin n} → toℕ f < n fin<n {_} {zero} = s≤s z≤n fin<n {suc n} {suc f} = s≤s (fin<n {n} {f}) i=j : {n : ℕ} (i j : Fin n) → toℕ i ≡ toℕ j → i ≡ j i=j {suc n} zero zero refl = refl i=j {suc n} (suc i) (suc j) eq = cong ( λ k → suc k ) ( i=j i j (cong ( λ k → Data.Nat.pred k ) eq) ) -- ¬∀⟶∃¬ : ∀ n {p} (P : Pred (Fin n) p) → Decidable P → ¬ (∀ i → P i) → (∃ λ i → ¬ P i) End : (m : ℕ ) → (p : Q → Bool ) → Set End m p = (i : Fin n) → m ≤ toℕ i → p (Q←F i ) ≡ false next-end : {m : ℕ } → ( p : Q → Bool ) → End (suc m) p → (m<n : m < n ) → p (Q←F (fromℕ≤ m<n )) ≡ false → End m p next-end {m} p prev m<n np i m<i with Data.Nat.Properties.<-cmp m (toℕ i) next-end p prev m<n np i m<i | tri< a ¬b ¬c = prev i a next-end p prev m<n np i m<i | tri> ¬a ¬b c = ⊥-elim ( nat-≤> m<i c ) next-end {m} p prev m<n np i m<i | tri≈ ¬a b ¬c = subst ( λ k → p (Q←F k) ≡ false) (m<n=i i b m<n ) np where m<n=i : {n : ℕ } (i : Fin n) {m : ℕ } → m ≡ (toℕ i) → (m<n : m < n ) → fromℕ≤ m<n ≡ i m<n=i i eq m<n = i=j (fromℕ≤ m<n) i (subst (λ k → k ≡ toℕ i) (sym (toℕ-fromℕ≤ m<n)) eq ) first-end : ( p : Q → Bool ) → End n p first-end p i i>n = ⊥-elim (nat-≤> i>n (fin<n {n} {i}) ) found : { p : Q → Bool } → (q : Q ) → p q ≡ true → exists p ≡ true found {p} q pt = found1 n (lt0 n) ( first-end p ) where found1 : (m : ℕ ) (m<n : m Data.Nat.≤ n ) → ((i : Fin n) → m ≤ toℕ i → p (Q←F i ) ≡ false ) → exists1 m m<n p ≡ true found1 0 m<n end = ⊥-elim ( ¬-bool (subst (λ k → k ≡ false ) (cong (λ k → p k) (finiso→ q) ) (end (F←Q q) z≤n )) pt ) found1 (suc m) m<n end with bool-≡-? (p (Q←F (fromℕ≤ m<n))) true found1 (suc m) m<n end | yes eq = subst (λ k → k \/ exists1 m (lt2 m<n) p ≡ true ) (sym eq) (bool-or-4 {exists1 m (lt2 m<n) p} ) found1 (suc m) m<n end | no np = begin p (Q←F (fromℕ≤ m<n)) \/ exists1 m (lt2 m<n) p ≡⟨ bool-or-1 (¬-bool-t np ) ⟩ exists1 m (lt2 m<n) p ≡⟨ found1 m (lt2 m<n) (next-end p end m<n (¬-bool-t np )) ⟩ true ∎ where open ≡-Reasoning not-found : { p : Q → Bool } → ( (q : Q ) → p q ≡ false ) → exists p ≡ false not-found {p} pn = not-found2 n (lt0 n) where not-found2 : (m : ℕ ) → (m<n : m Data.Nat.≤ n ) → exists1 m m<n p ≡ false not-found2 zero _ = refl not-found2 ( suc m ) m<n with pn (Q←F (fromℕ≤ {m} {n} m<n)) not-found2 (suc m) m<n | eq = begin p (Q←F (fromℕ≤ m<n)) \/ exists1 m (lt2 m<n) p ≡⟨ bool-or-1 eq ⟩ exists1 m (lt2 m<n) p ≡⟨ not-found2 m (lt2 m<n) ⟩ false ∎ where open ≡-Reasoning open import Level postulate f-extensionality : { n : Level} → Relation.Binary.PropositionalEquality.Extensionality n n -- (Level.suc n) found← : { p : Q → Bool } → exists p ≡ true → Found Q p found← {p} exst = found2 n (lt0 n) (first-end p ) where found2 : (m : ℕ ) (m<n : m Data.Nat.≤ n ) → End m p → Found Q p found2 0 m<n end = ⊥-elim ( ¬-bool (not-found (λ q → end (F←Q q) z≤n ) ) (subst (λ k → exists k ≡ true) (sym lemma) exst ) ) where lemma : (λ z → p (Q←F (F←Q z))) ≡ p lemma = f-extensionality ( λ q → subst (λ k → p k ≡ p q ) (sym (finiso→ q)) refl ) found2 (suc m) m<n end with bool-≡-? (p (Q←F (fromℕ≤ m<n))) true found2 (suc m) m<n end | yes eq = record { found-q = Q←F (fromℕ≤ m<n) ; found-p = eq } found2 (suc m) m<n end | no np = found2 m (lt2 m<n) (next-end p end m<n (¬-bool-t np )) not-found← : { p : Q → Bool } → exists p ≡ false → (q : Q ) → p q ≡ false not-found← {p} np q = ¬-bool-t ( contra-position {_} {_} {_} {exists p ≡ true} (found q) (λ ep → ¬-bool np ep ) ) fin-∨' : {A B : Set} → { a b : ℕ } → FiniteSet A {a} → FiniteSet B {b} → FiniteSet (A ∨ B) {a Data.Nat.+ b} fin-∨' {A} {B} {a} {b} fa fb = record { Q←F = Q←F ; F←Q = F←Q ; finiso→ = finiso→ ; finiso← = finiso← } where n : ℕ n = a Data.Nat.+ b Q : Set Q = A ∨ B f-a : ∀{i} → (f : Fin i ) → (a : ℕ ) → toℕ f > a → toℕ f < a Data.Nat.+ b → Fin b f-a {i} f zero lt lt2 = fromℕ≤ lt2 f-a {suc i} (suc f) (suc a) (s≤s lt) (s≤s lt2) = f-a f a lt lt2 f-a zero (suc x) () _ Q←F : Fin n → Q Q←F f with Data.Nat.Properties.<-cmp (toℕ f) a Q←F f | tri< lt ¬b ¬c = case1 (FiniteSet.Q←F fa (fromℕ≤ lt )) Q←F f | tri≈ ¬a eq ¬c = case2 (FiniteSet.Q←F fb (fromℕ≤ (0<b a (a<a+b eq ) ))) where a<a+b : toℕ f ≡ a → a < a Data.Nat.+ b a<a+b eq = subst (λ k → k < a Data.Nat.+ b) eq ( toℕ<n f ) 0<b : (a : ℕ ) → a < a Data.Nat.+ b → 0 < b 0<b zero a<a+b = a<a+b 0<b (suc a) (s≤s a<a+b) = 0<b a a<a+b Q←F f | tri> ¬a ¬b c = case2 (FiniteSet.Q←F fb (f-a f a c (toℕ<n f) )) F←Q : Q → Fin n F←Q (case1 qa) = inject+ b (FiniteSet.F←Q fa qa) F←Q (case2 qb) = raise a (FiniteSet.F←Q fb qb) finiso→ : (q : Q) → Q←F ( F←Q q ) ≡ q finiso→ (case1 qa) = {!!} finiso→ (case2 qb) = {!!} finiso← : (f : Fin n ) → F←Q ( Q←F f ) ≡ f finiso← f with Data.Nat.Properties.<-cmp (toℕ f) a finiso← f | tri< lt ¬b ¬c = lemma11 where lemma11 : inject+ b (FiniteSet.F←Q fa (FiniteSet.Q←F fa (fromℕ≤ lt ) )) ≡ f lemma11 = {!!} finiso← f | tri≈ ¬a eq ¬c = lemma12 where lemma12 : raise a (FiniteSet.F←Q fb (FiniteSet.Q←F fb (fromℕ≤ {!!} ))) ≡ f lemma12 = {!!} finiso← f | tri> ¬a ¬b c = lemma13 where lemma13 : raise a (FiniteSet.F←Q fb ((FiniteSet.Q←F fb (f-a f a c (toℕ<n f))))) ≡ f lemma13 = {!!} import Data.Nat.DivMod import Data.Nat.Properties open _∧_ open import Data.Vec import Data.Product exp2 : (n : ℕ ) → exp 2 (suc n) ≡ exp 2 n Data.Nat.+ exp 2 n exp2 n = begin exp 2 (suc n) ≡⟨⟩ 2 * ( exp 2 n ) ≡⟨ *-comm 2 (exp 2 n) ⟩ ( exp 2 n ) * 2 ≡⟨ +-*-suc ( exp 2 n ) 1 ⟩ (exp 2 n ) Data.Nat.+ ( exp 2 n ) * 1 ≡⟨ cong ( λ k → (exp 2 n ) Data.Nat.+ k ) (proj₂ *-identity (exp 2 n) ) ⟩ exp 2 n Data.Nat.+ exp 2 n ∎ where open ≡-Reasoning open Data.Product cast-iso : {n m : ℕ } → (eq : n ≡ m ) → (f : Fin m ) → cast eq ( cast (sym eq ) f) ≡ f cast-iso refl zero = refl cast-iso refl (suc f) = cong ( λ k → suc k ) ( cast-iso refl f ) fin2List : {n : ℕ } → FiniteSet (Vec Bool n) {exp 2 n } fin2List {zero} = record { Q←F = λ _ → Vec.[] ; F←Q = λ _ → # 0 ; finiso→ = finiso→ ; finiso← = finiso← } where Q = Vec Bool zero finiso→ : (q : Q) → [] ≡ q finiso→ [] = refl finiso← : (f : Fin (exp 2 zero)) → # 0 ≡ f finiso← zero = refl fin2List {suc n} = record { Q←F = Q←F ; F←Q = F←Q ; finiso→ = finiso→ ; finiso← = finiso← } where Q : Set Q = Vec Bool (suc n) QtoR : Vec Bool (suc n) → Vec Bool n ∨ Vec Bool n QtoR ( true ∷ x ) = case1 x QtoR ( false ∷ x ) = case2 x RtoQ : Vec Bool n ∨ Vec Bool n → Vec Bool (suc n) RtoQ ( case1 x ) = true ∷ x RtoQ ( case2 x ) = false ∷ x isoRQ : (x : Vec Bool (suc n) ) → RtoQ ( QtoR x ) ≡ x isoRQ (true ∷ _ ) = refl isoRQ (false ∷ _ ) = refl isoQR : (x : Vec Bool n ∨ Vec Bool n ) → QtoR ( RtoQ x ) ≡ x isoQR (case1 x) = refl isoQR (case2 x) = refl fin∨ = fin-∨' (fin2List {n}) (fin2List {n}) Q←F : Fin (exp 2 (suc n)) → Q Q←F f = RtoQ ( FiniteSet.Q←F fin∨ (cast (exp2 n) f )) F←Q : Q → Fin (exp 2 (suc n)) F←Q q = cast (sym (exp2 n)) ( FiniteSet.F←Q fin∨ ( QtoR q ) ) finiso→ : (q : Q) → Q←F ( F←Q q ) ≡ q finiso→ q = begin RtoQ ( FiniteSet.Q←F fin∨ (cast (exp2 n) (cast (sym (exp2 n)) ( FiniteSet.F←Q fin∨ (QtoR q) )) )) ≡⟨ cong (λ k → RtoQ ( FiniteSet.Q←F fin∨ k)) (cast-iso (exp2 n) _ ) ⟩ RtoQ ( FiniteSet.Q←F fin∨ ( FiniteSet.F←Q fin∨ (QtoR q) )) ≡⟨ cong ( λ k → RtoQ k ) ( FiniteSet.finiso→ fin∨ _ ) ⟩ RtoQ (QtoR _) ≡⟨ isoRQ q ⟩ q ∎ where open ≡-Reasoning finiso← : (f : Fin (exp 2 (suc n) )) → F←Q ( Q←F f ) ≡ f finiso← f = begin cast _ (FiniteSet.F←Q fin∨ (QtoR (RtoQ (FiniteSet.Q←F fin∨ (cast _ f )) ) )) ≡⟨ cong (λ k → cast (sym (exp2 n)) (FiniteSet.F←Q fin∨ k )) (isoQR (FiniteSet.Q←F fin∨ (cast _ f))) ⟩ cast (sym (exp2 n)) (FiniteSet.F←Q fin∨ (FiniteSet.Q←F fin∨ (cast (exp2 n) f ))) ≡⟨ cong (λ k → cast (sym (exp2 n)) k ) ( FiniteSet.finiso← fin∨ _ ) ⟩ cast _ (cast (exp2 n) f ) ≡⟨ cast-iso (sym (exp2 n)) _ ⟩ f ∎ where open ≡-Reasoning Func2List : { Q : Set } → {n : ℕ } → FiniteSet Q {n} → ( Q → Bool ) → Vec Bool n Func2List = {!!} List2Func : { Q : Set } → {n : ℕ } → FiniteSet Q {n} → Vec Bool n → ( Q → Bool ) List2Func = {!!}