Mercurial > hg > Members > kono > Proof > automaton
view automaton-in-agda/src/non-regular.agda @ 309:acb0214ea4d8
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 02 Jan 2022 15:27:17 +0900 |
parents | 2effd9a23299 |
children | 271ded718895 |
line wrap: on
line source
module non-regular where open import Data.Nat open import Data.Empty open import Data.List open import Data.Maybe hiding ( map ) open import Relation.Binary.PropositionalEquality hiding ( [_] ) open import logic open import automaton open import automaton-ex open import finiteSetUtil open import finiteSet open import Relation.Nullary open import regular-language open import nat open FiniteSet inputnn : List In2 → Maybe (List In2) inputnn [] = just [] inputnn (i1 ∷ t) = just (i1 ∷ t) inputnn (i0 ∷ t) with inputnn t ... | nothing = nothing ... | just [] = nothing ... | just (i0 ∷ t1) = nothing -- can't happen ... | just (i1 ∷ t1) = just t1 -- remove i1 from later part inputnn1 : List In2 → Bool inputnn1 s with inputnn s ... | nothing = false ... | just [] = true ... | just _ = false t1 = inputnn1 ( i0 ∷ i1 ∷ [] ) t2 = inputnn1 ( i0 ∷ i0 ∷ i1 ∷ i1 ∷ [] ) t3 = inputnn1 ( i0 ∷ i0 ∷ i0 ∷ i1 ∷ i1 ∷ [] ) inputnn0 : ( n : ℕ ) → { Σ : Set } → ( x y : Σ ) → List Σ → List Σ inputnn0 zero {_} _ _ s = s inputnn0 (suc n) x y s = x ∷ ( inputnn0 n x y ( y ∷ s ) ) t4 : inputnn1 ( inputnn0 5 i0 i1 [] ) ≡ true t4 = refl t5 : ( n : ℕ ) → Set t5 n = inputnn1 ( inputnn0 n i0 i1 [] ) ≡ true -- -- if there is an automaton with n states , which accespt inputnn1, it has a trasition function. -- The function is determinted by inputs, -- open RegularLanguage open Automaton open _∧_ data Trace { Q : Set } { Σ : Set } (fa : Automaton Q Σ ) : (is : List Σ) → Q → Set where tend : {q : Q} → aend fa q ≡ true → Trace fa [] q tnext : (q : Q) → {i : Σ} { is : List Σ} → Trace fa is (δ fa q i) → Trace fa (i ∷ is) q tr-len : { Q : Set } { Σ : Set } → (fa : Automaton Q Σ ) → (is : List Σ) → (q : Q) → Trace fa is q → suc (length is) ≡ length (trace fa q is ) tr-len {Q} {Σ} fa .[] q (tend x) = refl tr-len {Q} {Σ} fa (i ∷ is) q (tnext .q t) = cong suc (tr-len {Q} {Σ} fa is (δ fa q i) t) tr-accept→ : { Q : Set } { Σ : Set } → (fa : Automaton Q Σ ) → (is : List Σ) → (q : Q) → Trace fa is q → accept fa q is ≡ true tr-accept→ {Q} {Σ} fa [] q (tend x) = x tr-accept→ {Q} {Σ} fa (i ∷ is) q (tnext _ tr) = tr-accept→ {Q} {Σ} fa is (δ fa q i) tr tr-accept← : { Q : Set } { Σ : Set } → (fa : Automaton Q Σ ) → (is : List Σ) → (q : Q) → accept fa q is ≡ true → Trace fa is q tr-accept← {Q} {Σ} fa [] q ac = tend ac tr-accept← {Q} {Σ} fa (x ∷ []) q ac = tnext _ (tend ac ) tr-accept← {Q} {Σ} fa (x ∷ x1 ∷ is) q ac = tnext _ (tr-accept← fa (x1 ∷ is) (δ fa q x) ac) tr→qs : { Q : Set } { Σ : Set } → (fa : Automaton Q Σ ) → (is : List Σ) → (q : Q) → Trace fa is q → List Q tr→qs fa [] q (tend x) = [] tr→qs fa (i ∷ is) q (tnext q tr) = q ∷ tr→qs fa is (δ fa q i) tr tr→qs=is : { Q : Set } { Σ : Set } → (fa : Automaton Q Σ ) → (is : List Σ) → (q : Q) → (tr : Trace fa is q ) → length is ≡ length (tr→qs fa is q tr) tr→qs=is fa .[] q (tend x) = refl tr→qs=is fa (i ∷ is) q (tnext .q tr) = cong suc (tr→qs=is fa is (δ fa q i) tr) open Data.Maybe open import Relation.Binary.HeterogeneousEquality as HE using (_≅_ ) open import Relation.Binary.Definitions open import Data.Unit using (⊤ ; tt) open import Data.Nat.Properties sometime : { a : Set } (x : List a ) → (n : ℕ) → n ≤ length x → (P : a → Set) → Set sometime {a} [] .zero z≤n P = ⊤ sometime {a} (x ∷ x₁) zero z≤n P = P x sometime {a} (x ∷ x₁) (suc n) (s≤s lt) P = sometime {a} x₁ n lt P get : { a : Set } (x : List a ) → (n : ℕ) → Maybe a get [] zero = nothing get [] (suc n) = nothing get (x ∷ x₁) zero = just x get (x ∷ x₁) (suc n) = get x₁ n is0-bool : ( i : ℕ ) → Bool is0-bool zero = true is0-bool (suc i) = false data QDSEQ { Q : Set } { Σ : Set } { fa : Automaton Q Σ} ( finq : FiniteSet Q) (qd : Q) (z1 : List Σ) : {q : Q} {y2 : List Σ} → Trace fa (y2 ++ z1) q → Set where qd-next : (i : Σ) (y2 : List Σ) → (q : Q) → (tr : Trace fa (y2 ++ z1) (δ fa q i)) → equal? finq qd q ≡ is0-bool (length y2) → QDSEQ finq qd z1 tr → QDSEQ finq qd z1 (tnext q tr) record TA1 { Q : Set } { Σ : Set } (fa : Automaton Q Σ ) (finq : FiniteSet Q) ( q qd : Q ) (is : List Σ) : Set where field y z : List Σ yz=is : y ++ z ≡ is trace-z : Trace fa z qd trace-yz : Trace fa (y ++ z) q q=qd : equal? finq qd q ≡ is0-bool (length y) record TA { Q : Set } { Σ : Set } (fa : Automaton Q Σ ) ( q : Q ) (is : List Σ) : Set where field x y z : List Σ xyz=is : x ++ y ++ z ≡ is trace-xyz : Trace fa (x ++ y ++ z) q trace-xyyz : Trace fa (x ++ y ++ y ++ z) q non-nil-y : ¬ (y ≡ []) make-TA : { Q : Set } { Σ : Set } (fa : Automaton Q Σ ) (fins : FiniteSet Σ) (finq : FiniteSet Q) (q qd : Q) (is : List Σ) → (tr : Trace fa is q ) → dup-in-list finq qd (tr→qs fa is q tr) ≡ true → TA fa q is make-TA {Q} {Σ} fa fins finq q qd is tr dup = tra-phase1 q is tr dup where open TA tra-phase2 : (q : Q) → (is : List Σ) → (tr : Trace fa is q ) → phase2 finq qd (tr→qs fa is q tr) ≡ true → TA1 fa finq q qd is tra-phase2 q (i ∷ is) (tnext q tr) p with equal? finq qd q | inspect ( equal? finq qd) q ... | true | record { eq = eq } = record { y = [] ; z = i ∷ is ; yz=is = refl ; q=qd = eq ; trace-z = subst (λ k → Trace fa (i ∷ is) k ) (sym (equal→refl finq eq)) (tnext q tr) ; trace-yz = tnext q tr } ... | false | record { eq = eq } = record { y = i ∷ TA1.y ta ; z = TA1.z ta ; yz=is = cong (i ∷_ ) (TA1.yz=is ta ) ; q=qd = eq ; trace-z = TA1.trace-z ta ; trace-yz = tnext q ( TA1.trace-yz ta ) } where ta : TA1 fa finq (δ fa q i) qd is ta = tra-phase2 (δ fa q i) is tr p tra-phase1 : (q : Q) → (is : List Σ) → (tr : Trace fa is q ) → phase1 finq qd (tr→qs fa is q tr) ≡ true → TA fa q is tra-phase1 q (i ∷ is) (tnext q tr) p with equal? finq qd q | inspect (equal? finq qd) q | phase1 finq qd (tr→qs fa is (δ fa q i) tr) | inspect ( phase1 finq qd) (tr→qs fa is (δ fa q i) tr) ... | true | record { eq = eq } | false | record { eq = np} = record { x = [] ; y = i ∷ TA1.y ta ; z = TA1.z ta ; xyz=is = cong (i ∷_ ) (TA1.yz=is ta) ; non-nil-y = λ () ; trace-xyz = tnext q (TA1.trace-yz ta) ; trace-xyyz = tra-04 (i ∷ TA1.y ta) q (tnext q (subst (λ k → Trace fa (y1 ++ z1) (δ fa k i) ) (equal→refl finq eq) tryz0)) } where ta : TA1 fa finq (δ fa q i ) qd is ta = tra-phase2 (δ fa q i ) is tr p y1 = TA1.y ta z1 = TA1.z ta tryz0 : Trace fa (y1 ++ z1) (δ fa qd i) tryz0 = subst₂ (λ j k → Trace fa k (δ fa j i) ) (sym (equal→refl finq eq)) (sym (TA1.yz=is ta)) tr tryz : Trace fa (i ∷ y1 ++ z1) qd tryz = tnext qd tryz0 tra-06 : equal? finq qd (δ fa q i) ≡ is0-bool (length y1) tra-06 = TA1.q=qd ta tra-05 : (y2 : List Σ) → (q : Q) → (tr : Trace fa (y2 ++ z1) q) → equal? finq qd q ≡ is0-bool (length y2) tra-05 y2 q tr = {!!} tra-04 : (y2 : List Σ) → (q : Q) → (tr : Trace fa (y2 ++ z1) q) → Trace fa (y2 ++ (i ∷ y1) ++ z1) q tra-04 [] q tr with equal? finq qd q | inspect (equal? finq qd) q ... | true | record { eq = eq } = subst (λ k → Trace fa (i ∷ y1 ++ z1) k) (equal→refl finq eq) tryz ... | false | record { eq = ne } = ⊥-elim ( ¬-bool ne (tra-05 [] q tr) ) tra-04 (y0 ∷ y2) q (tnext q tr) with equal? finq qd q | inspect (equal? finq qd) q ... | true | record { eq = eq } = ⊥-elim ( ¬-bool (tra-05 (y0 ∷ y2) q (tnext q tr)) eq ) where -- y2 + z1 contains two qd ... | false | record { eq = ne } = tnext q (tra-04 y2 (δ fa q y0) tr ) ... | true | record { eq = eq } | true | record { eq = np} = record { x = i ∷ x ta ; y = y ta ; z = z ta ; xyz=is = cong (i ∷_ ) (xyz=is ta) ; non-nil-y = non-nil-y ta ; trace-xyz = tnext q (trace-xyz ta ) ; trace-xyyz = tnext q (trace-xyyz ta )} where ta : TA fa (δ fa q i ) is ta = tra-phase1 (δ fa q i ) is tr np ... | false | _ | _ | _ = record { x = i ∷ x ta ; y = y ta ; z = z ta ; xyz=is = cong (i ∷_ ) (xyz=is ta) ; non-nil-y = non-nil-y ta ; trace-xyz = tnext q (trace-xyz ta ) ; trace-xyyz = tnext q (trace-xyyz ta )} where ta : TA fa (δ fa q i ) is ta = tra-phase1 (δ fa q i ) is tr p open RegularLanguage open import Data.Nat.Properties open import nat lemmaNN : (r : RegularLanguage In2 ) → ¬ ( (s : List In2) → isRegular inputnn1 s r ) lemmaNN r Rg = {!!} where n : ℕ n = suc (finite (afin r)) nn = inputnn0 n i0 i1 [] nn01 : (i : ℕ) → inputnn1 ( inputnn0 i i0 i1 [] ) ≡ true nn01 zero = refl nn01 (suc i) with nn01 i ... | t = {!!} nn03 : accept (automaton r) (astart r) nn ≡ true nn03 = subst (λ k → k ≡ true ) (Rg nn ) (nn01 n) nn09 : (n m : ℕ) → n ≤ n + m nn09 zero m = z≤n nn09 (suc n) m = s≤s (nn09 n m) nn04 : Trace (automaton r) nn (astart r) nn04 = tr-accept← (automaton r) nn (astart r) nn03 nntrace = trace (automaton r) (astart r) nn nn07 : (n : ℕ) → length (inputnn0 n i0 i1 []) ≡ n + n nn07 n = subst (λ k → length (inputnn0 n i0 i1 []) ≡ k) (+-comm (n + n) _ ) (nn08 n [] )where nn08 : (n : ℕ) → (s : List In2) → length (inputnn0 n i0 i1 s) ≡ n + n + length s nn08 zero s = refl nn08 (suc n) s = begin length (inputnn0 (suc n) i0 i1 s) ≡⟨ refl ⟩ suc (length (inputnn0 n i0 i1 (i1 ∷ s))) ≡⟨ cong suc (nn08 n (i1 ∷ s)) ⟩ suc (n + n + suc (length s)) ≡⟨ +-assoc (suc n) n _ ⟩ suc n + (n + suc (length s)) ≡⟨ cong (λ k → suc n + k) (sym (+-assoc n _ _)) ⟩ suc n + ((n + 1) + length s) ≡⟨ cong (λ k → suc n + (k + length s)) (+-comm n _) ⟩ suc n + (suc n + length s) ≡⟨ sym (+-assoc (suc n) _ _) ⟩ suc n + suc n + length s ∎ where open ≡-Reasoning nn05 : length nntrace > finite (afin r) nn05 = begin suc (finite (afin r)) ≤⟨ nn09 _ _ ⟩ n + n ≡⟨ sym (nn07 n) ⟩ length (inputnn0 n i0 i1 []) ≤⟨ refl-≤s ⟩ {!!} ≤⟨ {!!} ⟩ length nntrace ∎ where open ≤-Reasoning nn06 : Dup-in-list ( afin r) nntrace nn06 = dup-in-list>n (afin r) nntrace nn05 TAnn : TA (automaton r) (astart r) nn TAnn = make-TA (automaton r) {!!} (afin r) (astart r) {!!} nn {!!} {!!} count : In2 → List In2 → ℕ count _ [] = 0 count i0 (i0 ∷ s) = suc (count i0 s) count i1 (i1 ∷ s) = suc (count i1 s) count x (_ ∷ s) = count x s nn11 : {x : In2} → (s t : List In2) → count x (s ++ t) ≡ count x s + count x t nn11 = {!!} nn10 : (s : List In2) → accept (automaton r) (astart r) s ≡ true → count i0 s ≡ count i1 s nn10 = {!!} i1-i0? : List In2 → Bool i1-i0? [] = false i1-i0? (i1 ∷ []) = false i1-i0? (i0 ∷ []) = false i1-i0? (i1 ∷ i0 ∷ s) = true i1-i0? (_ ∷ s0 ∷ s1) = i1-i0? (s0 ∷ s1) nn20 : {s s0 s1 : List In2} → accept (automaton r) (astart r) s ≡ true → ¬ ( s ≡ s0 ++ i1 ∷ i0 ∷ s1 ) nn20 = {!!} mono-color : List In2 → Bool mono-color [] = true mono-color (i0 ∷ s) = mono-color0 s where mono-color0 : List In2 → Bool mono-color0 [] = true mono-color0 (i1 ∷ s) = false mono-color0 (i0 ∷ s) = mono-color0 s mono-color (i1 ∷ s) = mono-color1 s where mono-color1 : List In2 → Bool mono-color1 [] = true mono-color1 (i0 ∷ s) = false mono-color1 (i1 ∷ s) = mono-color1 s record Is10 (s : List In2) : Set where field s0 s1 : List In2 is-10 : s ≡ s0 ++ i1 ∷ i0 ∷ s1 not-mono : { s : List In2 } → ¬ (mono-color s ≡ true) → Is10 (s ++ s) not-mono = {!!} mono-count : { s : List In2 } → mono-color s ≡ true → (length s ≡ count i0 s) ∨ ( length s ≡ count i1 s) mono-count = {!!} tann : {x y z : List In2} → ¬ y ≡ [] → accept (automaton r) (astart r) (x ++ y ++ z) ≡ true → ¬ (accept (automaton r) (astart r) (x ++ y ++ y ++ z) ≡ true ) tann {x} {y} {z} ny axyz axyyz with mono-color y ... | true = {!!} ... | false = {!!}